
IDA*-1	
© Gunnar Gotshalks!

Best-First Search!
Minimizing Space or Time!

!
IDA*!

Save space, take more time!
!

IDA*-2	
© Gunnar Gotshalks!

A* space complexity!

» What does the space complexity of A* depend upon?!

IDA*-3	
© Gunnar Gotshalks!

A* space complexity – 2!

» What does the space complexity of A* depend upon?!
>  Saves all found nodes!

IDA*-4	
© Gunnar Gotshalks!

A* space complexity – 3!

» What does the space complexity of A* depend upon?!
>  Saves all found nodes!

» What does the number of found nodes depend upon?!
!

IDA*-5	
© Gunnar Gotshalks!

A* space complexity – 4!

» What does the space complexity of A* depend upon?!
>  Saves all found nodes!

» What does the number of saved nodes depend upon?!
>  Depends upon the branching factor (B) and height of

tree (H)!
!

IDA*-6	
© Gunnar Gotshalks!

A* space complexity – 5!

» What is the space complexity of A*?!

IDA*-7	
© Gunnar Gotshalks!

A* space complexity – 6!

» What is the space complexity of A*? 
!

>  Approximately BH!

IDA*-8	
© Gunnar Gotshalks!

Space saving!

»  How can we save space?!

IDA*-9	
© Gunnar Gotshalks!

Space saving – 2!

»  How can we save space?!
>  Not keep all the found nodes!
!

IDA*-10	
© Gunnar Gotshalks!

Space saving – 3!

»  How can we save space?!
>  Not keep all the found nodes!

» Which ones do we keep?!

IDA*-11	
© Gunnar Gotshalks!

Space saving – 4!

»  How can we save space?!
>  Not keep all the found nodes!

» Which ones do we keep?!
>  The ones in the current path!

IDA*-12	
© Gunnar Gotshalks!

Space saving – 5!

»  How can we save space?!
>  Not keep all the found nodes!

» Which ones do we keep?!
>  The ones in the current path!

»  How do we get the nodes we threw away?!

IDA*-13	
© Gunnar Gotshalks!

Space saving – 6!

»  How can we save space?!
>  Not keep all the found nodes!

» Which ones do we keep?!
>  The ones in the current path!

»  How do we get the nodes we threw away?!
>  By regenerating them when a different path is to be

extended!

IDA*-14	
© Gunnar Gotshalks!

Iterative deepening!

»  How does iterative deepening work?!

IDA*-15	
© Gunnar Gotshalks!

Iterative deepening – 2!

»  How does iterative deepening work?!
>  By doing depth-first search with increasing depth!

IDA*-16	
© Gunnar Gotshalks!

Iterative deepening – 3!

»  How does iterative deepening work?!
>  By repeating depth-first search with increasing depth!

» What can we use instead of depth?!

IDA*-17	
© Gunnar Gotshalks!

Iterative deepening – 4!

»  How does iterative deepening work?!
>  By repeating depth-first search with increasing depth!

» What can we use instead of depth? What analogous
feature is the A* algorithm based on?!

IDA*-18	
© Gunnar Gotshalks!

Iterative deepening – 5!

»  How does iterative deepening work?!
>  By repeating depth-first search with increasing depth!

» What can we use instead of depth? What analogous
feature is the A* algorithm based on?!

>  The f(N) function!

IDA*-19	
© Gunnar Gotshalks!

Iterative deepening – 6!

»  How does iterative deepening work?!
>  By repeating depth-first search with increasing depth!

» What can we use instead of depth? What analogous
feature is the A* algorithm based on?!

>  The f(N) function!

»  How do we use the f(N) function?!

IDA*-20	
© Gunnar Gotshalks!

Iterative deepening – 7!

»  How does iterative deepening work?!
>  By repeating depth-first search with increasing depth!

» What can we use instead of depth? What analogous
feature is the A* algorithm based on?!

>  The f(N) function!

»  How do we use the f(N) function?!
>  Do depth-first search with increasing f-limit!

IDA*-21	
© Gunnar Gotshalks!

A view of iterative f(N) deepening!

S

f = Bi

f = Bj

f = Bk

Bi < Bj < Bk

IDA*-22	
© Gunnar Gotshalks!

IDA* algorithm!

bound = f(start_node)!
found = false!
!
while not found do !
!
 depth-first search from start_node for nodes N  
 such that f(N) ≤ bound!
!
 if goal_found!
 then found ! true!
 else bound = min { f(N) | N generated by search • f(N) > bound }!
 fi!
!
end!

IDA*-23	
© Gunnar Gotshalks!

Exercise question!

Created by Bratko!

Trace the execution of A* for the tree. How many nodes are!
generated by A* and IDA*? Count all re-generated nodes.!

L

A

B C

D E F G

IH J K

M

f = 1

f = 1

f = 2

f = 4

f = 5

f = 1

f = 3

f = 4

f = 2

f = 10

f = 10

f = 10

f = 10

IDA*-24	
© Gunnar Gotshalks!

IDA* performance!

» What would we examine in thinking about IDA*
performance?!

IDA*-25	
© Gunnar Gotshalks!

IDA* performance – 2!

» What would we examine in thinking about IDA*
performance?!

>  Space!
>  TIme!

IDA*-26	
© Gunnar Gotshalks!

IDA* space performance!

»  Space is not a consideration, why?!
!

IDA*-27	
© Gunnar Gotshalks!

IDA* space performance – 2!

»  Space is not a consideration, why?!
>  Only one path is kept at a time!

IDA*-28	
© Gunnar Gotshalks!

IDA* time performance!

◊  Need to look at time.!
» What is the problem if only one path is kept at any time?!

IDA*-29	
© Gunnar Gotshalks!

IDA* time performance – 2!

◊  Need to look at time.!
» What is the problem if only one path is kept at any time?!

>  Have to regenerate paths that are to be extended!

IDA*-30	
© Gunnar Gotshalks!

IDA* regeneration performance!

»  Under what conditions is the overhead of re-generating
nodes!

>  High?!

IDA*-31	
© Gunnar Gotshalks!

IDA* regeneration performance – 2!

»  Under what conditions is the overhead of re-generating
nodes!

>  High?!
–  When there are many different f values	

IDA*-32	
© Gunnar Gotshalks!

IDA* regeneration performance – 3!

»  Under what conditions is the overhead of re-generating
nodes!

>  High?!
–  When there are many different f values	

–  Extreme case have one new node per path regenerated	

IDA*-33	
© Gunnar Gotshalks!

IDA* regeneration performance – 4!

»  Under what conditions is the overhead of re-generating
nodes!

>  High?!
–  When there are many different f values	

–  Extreme case have one new node per path regenerated	

–  Unacceptable overhead	

IDA*-34	
© Gunnar Gotshalks!

IDA* regeneration performance – 5!

»  Under what conditions is the overhead of re-generating
nodes!

>  Low?!

IDA*-35	
© Gunnar Gotshalks!

IDA* regeneration performance – 5!

»  Under what conditions is the overhead of re-generating
nodes!

>  Low?!
–  When there are equal f values	

IDA*-36	
© Gunnar Gotshalks!

IDA* regeneration performance – 6!

»  Under what conditions is the overhead of re-generating
nodes!

>  Low?!
–  When there are equal f values	

–  Each path generates many new nodes	

IDA*-37	
© Gunnar Gotshalks!

IDA* regeneration performance – 7!

»  Under what conditions is the overhead of re-generating
nodes!

>  Low?!
–  When there are equal f values	

–  Each path generates many new nodes	

–  Regenerated nodes are a small fraction of total

generated nodes	

IDA*-38	
© Gunnar Gotshalks!

Monotonic function!

» What does monotonic function mean?!

IDA*-39	
© Gunnar Gotshalks!

Monotonic function!

» What does monotonic function mean?!
>  A function that is either entirely non-increasing or

non-decreasing!

IDA*-40	
© Gunnar Gotshalks!

f function monotonicity!

»  For the A* algorithm does It matter if the f function is
non-monotonic?!

IDA*-41	
© Gunnar Gotshalks!

f function monotonicity – 2!

»  For the A* algorithm does It matter if the f function is
non-monotonic?!

>  No!
! ! ! !!

IDA*-42	
© Gunnar Gotshalks!

f function monotonicity – 3!

»  For the A* algorithm does It matter if the f function is
non-monotonic?!

>  No!

» Why? ! ! ! ! ! ! !
! ! ! ! ! !!

IDA*-43	
© Gunnar Gotshalks!

f function monotonicity – 4!

»  For the A* algorithm does It matter if the f function is
non-monotonic?!

>  No!

» Why?!
>  The A* algorithm has all the paths and will always

expand the best one first
! ! ! ! ! ! !
! ! ! ! ! !!

IDA*-44	
© Gunnar Gotshalks!

f function monotonicity – 5!

»  For the IDA* algorithm does It matter if the f function is
non-monotonic?!

! ! ! ! ! ! !
! ! ! ! ! !!

IDA*-45	
© Gunnar Gotshalks!

f function monotonicity – 5!

»  For the IDA* algorithm does It matter if the f function is
non-monotonic?!

>  Yes ! ! !!

IDA*-46	
© Gunnar Gotshalks!

f function monotonicity – 6!

»  For the IDA* algorithm does It matter if the f function is
non-monotonic?!

>  Yes!

» Why? ! ! ! ! ! ! !
! ! ! ! ! !!

IDA*-47	
© Gunnar Gotshalks!

f function monotonicity – 7!

»  For the IDA* algorithm does It matter if the f function is
non-monotonic?!

>  Yes!

» Why?!
>  The IDA* algorithm always expands paths from the

start with a monotonically increasing f function it
expands nodes in best-first order.

! ! ! ! ! ! !
! ! ! ! ! !!

IDA*-48	
© Gunnar Gotshalks!

Non-monotonic f function problem!

◊  In the following if f-bound = 3, then the “B” node could
expand before the “C”, “G” sequence!

A

B C

F G

f = 5

f = 1

f = 2f = 4

f = 3

IDA*-49	
© Gunnar Gotshalks!

IDA* Problem!

» What is a major problem with IDA*?!

IDA*-50	
© Gunnar Gotshalks!

IDA* Problem – 2!

» What is a major problem with IDA*?!

>  In unfavourable situations the cost of regenerating
nodes becomes unacceptable!

IDA*-51	
© Gunnar Gotshalks!

IDA* Problem – 3!

» What is a major problem with IDA*?!

>  In unfavourable situations the cost of regenerating
nodes becomes unacceptable!

»  How do we solve the problem?!

IDA*-52	
© Gunnar Gotshalks!

IDA* Problem – 4!

» What is a major problem with IDA*?!

>  In unfavourable situations the cost of regenerating
nodes becomes unacceptable!

»  How do we solve the problem?!

>  Create a different algorithm!

IDA*-53	
© Gunnar Gotshalks!

IDA* Problem – 5!

» What is a major problem with IDA*?!

>  In unfavourable situations the cost of regenerating
nodes becomes unacceptable!

»  How do we solve the problem?!

>  Create a different algorithm!
–  RBFS – Recursive Best-First Search	

