
BSM-1	

© Gunnar Gotshalks!

Basic Search Methods!
!



BSM-2	

© Gunnar Gotshalks!

Block World!

§  Rearrange blocks in a block world!



BSM-3	

© Gunnar Gotshalks!

Word Puzzle!

§  Rearrange letters into a particular order!
§  Tiles can move horizontally or vertically into the  

empty space!

R A T E

Y O U R

M I N D

P A L

L A T E

Y O U R

M I N D

P A R



BSM-4	

© Gunnar Gotshalks!

Knapsack Packing!

§  Put items into a container!
§  Here, put rectangles into a box!



BSM-5	

© Gunnar Gotshalks!

Travelling Salesman!

§  Travel from home to each of the cities once and return 
home.!

Home C

B

E

D



BSM-6	

© Gunnar Gotshalks!

Commonality!

§  When one is working on the previous problems 
what is common about the work?!



BSM-7	

© Gunnar Gotshalks!

Commonality – 2!

§  When one is working on the previous problems 
what is common about the work?!
§  Actions take place!

§  Blocks are moved, one at a time	





BSM-8	

© Gunnar Gotshalks!

Commonality – 3!

§  When one is working on the previous problems 
what is common about the work?!
§  Actions take place!

§  Blocks are moved, one at a time���
	



§  Tiles are moved, one at a time	





BSM-9	

© Gunnar Gotshalks!

Commonality – 4!

§  When one is working on the previous problems 
what is common about the work?!
§  Actions take place!

§  Blocks are moved, one at a time���
	



§  Tiles are moved, one at a time���
	



§  Rectangles move, one at a time	





BSM-10	

© Gunnar Gotshalks!

Commonality – 5!

§  When one is working on the previous problems 
what is common about the work?!
§  Actions take place!

§  Blocks are moved, one at a time���
	



§  Tiles are moved, one at a time���
	



§  Rectangles move, one at a time���
	



§  Salesman moves, one city at a time	





BSM-11	

© Gunnar Gotshalks!

Commonality of actions!

§  When one is working on the previous problems 
what is common about the work?!
§  Actions take place!

§  Blocks are moved, one at a time	


§  Tiles are moved, one at a time	


§  Rectangles move, one at a time	


§  Salesman moves, one city at a time	



§  What is a common property of the actions?!



BSM-12	

© Gunnar Gotshalks!

Commonality of actions – 2!

§  What is a common property of the actions? 
!
§  The problem situation changes  
!

§  I.e. the state of the problem changes!



BSM-13	

© Gunnar Gotshalks!

Solving a problem!

§  What do you do in solving a problem?!



BSM-14	

© Gunnar Gotshalks!

Solving a problem – 2!

§  What do you do in solving a problem?!
§  Given an initial state!



BSM-15	

© Gunnar Gotshalks!

Solving a problem – 3!

§  What do you do in solving a problem?!
§  Given an initial state!
§  Given a goal state!
!



BSM-16	

© Gunnar Gotshalks!

Solving a problem – 4!

§  What do you do in solving a problem?!
§  Given an initial state!
§  Given a goal state!
§  Given a set of actions!



BSM-17	

© Gunnar Gotshalks!

Solving a problem – 5!

§  What do you do in solving a problem?!
§  Given an initial state!
§  Given a goal state!
§  Given a set of actions!
§  Traverse from state to state, by applying actions!



BSM-18	

© Gunnar Gotshalks!

Solving a problem – 6!

§  What do you do in solving a problem?!
§  Given an initial state!
§  Given a goal state!
§  Given a set of actions!
§  Traverse from state to state, by applying actions!

§  As an action is done you can consider the new state as 
being the new initial state	


§  You have a subproblem	





BSM-19	

© Gunnar Gotshalks!

Solving a problem – 7!

§  What do you do in solving a problem?!
§  Given an initial state!
§  Given a goal state!
§  Given a set of actions!
§  Traverse from state to state, by applying actions!

§  As an action is done you can consider the new state as 
being the new initial state	


§  You have a sub-problem	



§  Stop when a goal state is reached!



BSM-20	

© Gunnar Gotshalks!

Programming a problem solution!

§  What do you need to do in creating a programming 
solution for a problem?!



BSM-21	

© Gunnar Gotshalks!

Programming a problem solution – 2!

§  What do you need to do in creating a programming 
solution for a problem?!
§  Get a representation for a state!



BSM-22	

© Gunnar Gotshalks!

Programming a problem solution – 3!

§  What do you need to do in creating a programming 
solution for a problem?!
§  Get a representation for a state  
!

§  What is a representation?!



BSM-23	

© Gunnar Gotshalks!

Programming a problem solution – 4!

§  What do you need to do in creating a programming 
solution for a problem?!
§  Get a representation for a state!

§  What is a representation?!
§  The data structure	





BSM-24	

© Gunnar Gotshalks!

Programming a problem solution – 5!

§  What do you need to do in creating a programming 
solution for a problem?!
§  Get a representation for a state!

§  What is a representation?!
§  The data structure	



§  What else do you need?!



BSM-25	

© Gunnar Gotshalks!

Programming a problem solution – 6!

§  What do you need to do in creating a programming 
solution for a problem?!
§  Get a representation for a state!

§  The data structure���
	



§  Get a representation for the actions!



BSM-26	

© Gunnar Gotshalks!

Programming a problem solution – 7!

§  What do you need to do in creating a programming 
solution for a problem?!
§  Get a representation for a state!

§  The data structure���
	



§  Get a representation for the actions!

§  What is the representation?!



BSM-27	

© Gunnar Gotshalks!

Programming a problem solution – 8!

§  What do you need to do in creating a programming 
solution for a problem?!
§  Get a representation for a state!

§  The data structure	


§  Get a representation for the actions!

§  What is the representation?!
§  The routines	





BSM-28	

© Gunnar Gotshalks!

Programming a problem solution – 9!

§  What do you need to do in creating a programming 
solution for a problem?!
§  Get a representation for a state!

§  The data structure	


§  Get a representation for the actions!

§  The routines	





BSM-29	

© Gunnar Gotshalks!

Abstract state space!

§  What is the abstract structure of a state space?!



BSM-30	

© Gunnar Gotshalks!

Abstract state space – 2!

§  What is the abstract structure of a state space?!
§  A graph!
!



BSM-31	

© Gunnar Gotshalks!

Abstract state space – 3!

§  What is the abstract structure of the state space?!
§  A graph!

§  What are its vertices and edges?!



BSM-32	

© Gunnar Gotshalks!

Abstract state space – 4!

§  What is the abstract structure of the state space?!
§  A graph!

§  What are its vertices and edges?!
§  Vertices are the states!
§  Each edge is an action joining two states!

!



BSM-33	

© Gunnar Gotshalks!

Abstract state space – 5!

§  What is the abstract structure of the state space?!
§  A graph!

§  What are its vertices and edges?!
§  Vertices are the states!
§  Each edge is an action joining two states!

§  Is the graph directed or un-directed?!



BSM-34	

© Gunnar Gotshalks!

Abstract state space – 6!

§  What is the abstract structure of the state space?!
§  A graph!

§  What are its vertices and edges?!
§  Vertices are the states!
§  Each edge is an action joining two states!

§  Is the graph directed or un-directed?!
§  Problem dependent!

§  Undirected – Blocks, Word puzzle	


§  Directed – Knapsack, travelling salesman	





BSM-35	

© Gunnar Gotshalks!

State space solution!

§  In state space, what is a solution?!



BSM-36	

© Gunnar Gotshalks!

State space solution – 2!

§  In state space, what is a solution?!
§  A path from the start state to the goal state!

§  How do you find a path in the state space graph?!



BSM-37	

© Gunnar Gotshalks!

State space solution – 3!

§  In state space, what is a solution?!
§  A path from the start state to the goal state!

§  How do you find a path in the state space graph?!
§  Explore the graph by trying different paths!



BSM-38	

© Gunnar Gotshalks!

Path exploration!

§  During the exploration, how do you view the 
graph?!



BSM-39	

© Gunnar Gotshalks!

Path exploration – 2!

§  During the exploration, how do you view the 
graph?!
§  As a tree!

§  What is the problem?!



BSM-40	

© Gunnar Gotshalks!

Path exploration – 3!

§  During the exploration, how do you view the 
graph?!
§  As a tree!

§  What is the problem?!
§  Graphs have loops!



BSM-41	

© Gunnar Gotshalks!

Path exploration – 4!

§  During the exploration, how do you view the 
graph?!
§  As a tree!

§  What is the problem?!
§  Graphs have loops!
§  Need to remove the loops!



BSM-42	

© Gunnar Gotshalks!

Path exploration – 4!

§  During the exploration, how do you view the 
graph?!
§  As a tree!

§  What is the problem?!
§  Graphs have loops!
§  Need to remove the loops!
§  Implies checking that nodes do not repeat in the 

path!



BSM-43	

© Gunnar Gotshalks!

Path exploration – 5!

§  During the exploration, how do you view the 
graph?!
§  As a tree!

§  What is the problem?!
§  Graphs have loops!
§  Need to remove the loops!
§  Implies checking that nodes do not repeat in the 

path!
§  Logically breaking edges in the graph!



BSM-44	

© Gunnar Gotshalks!

Tree searching!

§  The state space is logically searched as a tree.!
§  We say the tree is traversed!

§  What are the two fundamental tree traversal 
methods?!



BSM-45	

© Gunnar Gotshalks!

Tree searching – 2!

§  The state space is logically searched as a tree.!
§  We say the tree is traversed!

§  What are the two fundamental tree traversal 
methods?!
§  Depth first!

§  Breadth first 
!



BSM-46	

© Gunnar Gotshalks!

Tree searching – 3!

§  The state space is logically searched as a tree.!
§  We say the tree is traversed!

§  What are the two fundamental tree traversal 
methods?!
§  Depth first!

§  Breadth first 
!

§  Iterative-deepening     !! Variation 1!

§  Bidirectional ! !! Variation 2!



BSM-47	

© Gunnar Gotshalks!

Depth-first search!

A

B C D

E F G IH

J K



BSM-48	

© Gunnar Gotshalks!

Depth-first search first 6 steps!

§  Candidate paths (accumulator) 
 in a list!

§  Extend it with a successor 
at the front of the list!

A

B C D

E F G IH

J K

Why backwards?!
  • Each path.!
  • Candidate paths.!

§  [ A ]             Start!
§  [ B, A ]!
§  [ E, B, A ]!
§  [ F, B, A ]     Backtrack!
§  [ J, F, B, A]!
§  [ C, A ]         Backtrack!
§  [ G, C, A ]!



BSM-49	

© Gunnar Gotshalks!

Depth-first search properties!

§  Find shortest solution? (Y, N) 
!

§  Time complexity!
§  Consider B (branching factor) 

and Dmax (max depth of search)!
§  Why not D?���
	



§  Space complexity!
§  Consider B (branching factor) 

 and Dmax (max depth of search)!
!



BSM-50	

© Gunnar Gotshalks!

Depth-first search properties – 2!

§  Shortest solution not guaranteed  
!



BSM-51	

© Gunnar Gotshalks!

Depth-first search properties – 3!

§  Shortest solution not guaranteed  
!

§  Infinite loops possible in cyclic graphs 
!



BSM-52	

© Gunnar Gotshalks!

Depth-first search properties – 4!

§  Shortest solution not guaranteed  
!

§  Infinite loops possible in cyclic graphs 
!

§  Time complexity is O( BDmax )!
§  On average have to follow half the paths up to the 

maximum depth  
!



BSM-53	

© Gunnar Gotshalks!

Depth-first search properties – 5!

§  Shortest solution not guaranteed  
!

§  Infinite loops possible in cyclic graphs 
!

§  Time complexity is O( BDmax )!

§  On average have to follow half the paths up to the 
maximum depth  
!

§  Space complexity is O( Dmax )!
§  Current path is most of the space, with linear 

overhead for backtracking!



BSM-54	

© Gunnar Gotshalks!

Depth-first problem!

§  What is the major problem with depth-first search?!



BSM-55	

© Gunnar Gotshalks!

Depth-first problem – 2!

§  What is the major problem with depth-first search?!
§  Potentially can go down an infinite path, miss 

the goal state!



BSM-56	

© Gunnar Gotshalks!

Depth-first problem – 3!

§  What is the major problem with depth-first search?!
§  Potentially can go down an infinite path, miss 

the goal state!

§  What can be done to prevent this?!



BSM-57	

© Gunnar Gotshalks!

Depth-first problem – 4!

§  What is the major problem with depth-first search?!
§  Potentially can go down an infinite path, miss 

the goal state!

§  What do can be done to prevent this?!
§  Set a maximum depth!



BSM-58	

© Gunnar Gotshalks!

Maximum depth problem!

§  What is the problem with setting a maximum depth 
of search?!



BSM-59	

© Gunnar Gotshalks!

Maximum depth problem – 2!

§  What is the problem with setting a maximum depth 
of search?!
§  Goal state may be deeper, never find it!



BSM-60	

© Gunnar Gotshalks!

Maximum depth problem – 3!

§  What is the problem with setting a maximum depth 
of search?!
§  Goal state may be deeper, never find it!

§  What can we do to overcome this problem?!



BSM-61	

© Gunnar Gotshalks!

Maximum depth problem – 4!

§  What is the problem with setting a maximum depth 
of search?!
§  Goal state may be deeper, never find it!

§  What can we do to overcome this problem?!
§  Explore by increasing depth!



BSM-62	

© Gunnar Gotshalks!

Maximum depth problem – 5!

§  What is the problem with setting a maximum depth 
of search?!
§  Goal state may be deeper, never find it!

§  What can we do to overcome this problem?!
§  Explore by increasing depth 
!

§  Incremental deepening!
!



BSM-63	

© Gunnar Gotshalks!

Iterative-deepening search!

§  Depth-first search done repetitively with increasing depth!
§  Why is this good?!



BSM-64	

© Gunnar Gotshalks!

Iterative-deepening search – 2!

§  Depth-first search done repetitively with increasing depth!
§  Why is this good?!

§  Avoids unbounded descent on any path!



BSM-65	

© Gunnar Gotshalks!

Iterative-deepening search properties!

§  Find shortest solution? (Y, N) 
!

§  Time complexity!
§  Consider B (branching factor) 

and D (depth of search) 
!

§  Space complexity!
§  Consider B (branching factor) 

and D (depth of search)!
!



BSM-66	

© Gunnar Gotshalks!

Iterative-deepening search properties – 2!

§  Shortest solution guaranteed!



BSM-67	

© Gunnar Gotshalks!

Iterative-deepening search properties – 3!

§  Shortest solution guaranteed  
!

§  Infinite loops possible in cyclic graphs!
§  Still have to break cycles!



BSM-68	

© Gunnar Gotshalks!

Iterative-deepening search properties – 4!

§  Shortest solution guaranteed  
!

§  Infinite loops possible in cyclic graphs!
§  Still have to break cycles  
!

§  Time complexity is O( BD )!
§  Generate all nodes up to depth D!

§  How many times is the successor relation used!



BSM-69	

© Gunnar Gotshalks!

Iterative-deepening search properties – 5!

§  Shortest solution guaranteed  
!

§  Infinite loops possible in cyclic graphs!
§  Still have to break cycles  
!

§  Time complexity is O( BD )!
§  Generate all nodes up to depth D!

§  How many times is the successor relation used  
!

§  Space complexity is O( D )!
§  Performs (D+1) depth-first searches!



BSM-70	

© Gunnar Gotshalks!

Breadth-first search!

A

B C D

E F G IH

J K



BSM-71	

© Gunnar Gotshalks!

Breadth-first search first two levels!

§  Candidate paths in a list!

§  Remove first path  
extend it!

§  Add extensions 
at the end of the list!

A

B C D

E F G IH

J K

§  [ [A] ] ! ! !Start!

§  [ [B,A], [C,A], [D,A] ]!

§  [ [C,A], [D,A], [E,B,A], [F,B,A] ]!

§  [ [D,A] ,[E,B,A], [F,B,A], [G,C,A] ]!

§  [ [E,B,A], [F,B,A], [G,C,A], 
 

  [H,D,A], [I,D,A] ]!



BSM-72	

© Gunnar Gotshalks!

Breadth-first search properties!

§  Finds shortest solution? (Y, N) 
!

§  Time complexity!
§  Consider B (branching factor) 

and D (depth of search) 
!

§  Space complexity!
§  Consider B (branching factor) 

 and D (depth of search)!



BSM-73	

© Gunnar Gotshalks!

Breadth-first search properties – 3!

§  Guaranteed to find the shortest path to a solution  
!

!



BSM-74	

© Gunnar Gotshalks!

Breadth-first search properties – 4!

§  Guaranteed to find the shortest path to a solution  
!

§  Infinite loops possible in cyclic graphs!
§  May need to break cycles!

!



BSM-75	

© Gunnar Gotshalks!

Breadth-first search properties – 5!

§  Guaranteed to find the shortest path to a solution  
!

§  Infinite loops possible in cyclic graphs!
§  May need to break cycles!

§  Time complexity is O( BD )!
§  Have to explore all paths  
!

!



BSM-76	

© Gunnar Gotshalks!

Breadth-first search properties – 6!

§  Guaranteed to find the shortest path to a solution  
!

§  Infinite loops possible in cyclic graphs!
§  May need to break cycles  
!

§  Time complexity is O( BD )!
§  Have to explore all paths  
!

§  Space complexity is O( BD )!
§  Need to keep all paths to be able to lengthen them!

!



BSM-77	

© Gunnar Gotshalks!

Bidirectional search!

§  What is bidirectional search?!



BSM-78	

© Gunnar Gotshalks!

Bidirectional search – 2!

§  Do breadth-first search from the Start to the Goal!

§  Simultaneously do a breadth-first search from the Goal to 
the Start!

Start! Goal!

D
≈D/2 ≈D/2



BSM-79	

© Gunnar Gotshalks!

Bidirectional search properties!

§  Find shortest solution? (Y, N)!

§  Time complexity!
§  Consider B (branching factor) and D (depth of 

search)!

§  Space complexity!
§  Consider B (branching factor) and D (depth of 

search)!
!



BSM-80	

© Gunnar Gotshalks!

Bidirectional search properties – 2!

§  Shortest solution guaranteed  
!

!



BSM-81	

© Gunnar Gotshalks!

Bidirectional search properties – 3!

§  Shortest solution guaranteed  
!

§  Infinite loops possible in cyclic graphs!
§  May need to break cycles!

 
!

!



BSM-82	

© Gunnar Gotshalks!

Bidirectional search properties – 4!

§  Shortest solution guaranteed  
!

§  Infinite loops possible in cyclic graphs 
!
§  May need to break cycles!

§  Time complexity is O( BD/2 )!
§  About half of breadth-first depth is searched in 

each direction 
!



BSM-83	

© Gunnar Gotshalks!

Bidirectional search properties – 5!

§  Shortest solution guaranteed  
!

§  Infinite loops possible in cyclic graphs 
!

§  Time complexity is O( BD/2 )!
§  About half of breadth-first depth is searched in 

each direction 
!

§  Space complexity is O( BD/2 )!
§  About half of breadth-first paths are kept in each 

direction!

!



BSM-84	

© Gunnar Gotshalks!

Bidirectional search conditions!

§  When can you use bidirectional search 
!

!



BSM-85	

© Gunnar Gotshalks!

Bidirectional search conditions– 2!

§  When can you use bidirectional search 
!
§  Need to know the goal state  
!

!



BSM-86	

© Gunnar Gotshalks!

Bidirectional search conditions!

§  When can you use bidirectional search 
!
§  Need to know the goal state  
!

§  Need to be able to have inverse of successor 
function!

!



BSM-87	

© Gunnar Gotshalks!

Bidirectional alias!

§  What alias do you know for bidirectional search?!



BSM-88	

© Gunnar Gotshalks!

Bidirectional alias – 2!

§  What alias do you know for bidirectional search? 
!
§  Combination of!

§  Forward chaining���
���
	

        and ���
	



§  Backward chaining	





BSM-89	

© Gunnar Gotshalks!

Time & space complexity summary!

§  Breadth-first and iterative deepening guarantee shortest 
solution!



BSM-90	

© Gunnar Gotshalks!

Time & space complexity summary – 2!

§  Breadth-first and iterative deepening guarantee shortest solution!

§  Breadth-first has high space complexity!



BSM-91	

© Gunnar Gotshalks!

Time & space complexity summary – 3!

§  Breadth-first and iterative deepening guarantee shortest solution!

§  Breadth-first has high space complexity!

§  Depth-first has low space complexity 
May search far below goal state depth!



BSM-92	

© Gunnar Gotshalks!

Time & space complexity summary – 4!

§  Breadth-first and iterative deepening guarantee shortest solution!

§  Breadth-first has high space complexity!

§  Depth-first has low space complexity 
May search far below goal state depth!

§  Iterative deepening has best performance in terms of 
orders of complexity!



BSM-93	

© Gunnar Gotshalks!

Problems with basic search!

§  What are the problems with basic search?!



BSM-94	

© Gunnar Gotshalks!

Problems with basic search – 2!

§  What are the problems with basic search?!

§  Too simplistic!



BSM-95	

© Gunnar Gotshalks!

Problems with basic search – 3!

§  What are the problems with basic search?!

§  Too simplistic!

§  Wastes time/resources exploring “obviously” 
poor paths.!



BSM-96	

© Gunnar Gotshalks!

Problems with basic search – 4!

§  What are the problems with basic search?!
§  Too simplistic!
§  Wastes time/resources exploring “obviously” 

poor paths.!

§  What can we do about it?!



BSM-97	

© Gunnar Gotshalks!

Problems with basic search – 5!

§  What are the problems with basic search?!
§  Too simplistic!
§  Wastes time/resources exploring “obviously” 

poor paths.!

§  What can we do about it?!
§  Use information / knowledge of the state space 

to make the search more efficient!



BSM-98	

© Gunnar Gotshalks!

Problems with basic search – 6!

§  What are the problems with basic search?!
§  Too simplistic!
§  Wastes time/resources exploring “obviously” 

poor paths.!

§  What can we do about it?!
§  Use information / knowledge of the state space 

to make the search more efficient 
!

§  Use heuristics to guide us!



BSM-99	

© Gunnar Gotshalks!

Heuristic searches!

§  Best-first search – A* algorithm 
 !

§  IDA* algorithm!
§  Iterative deepening A*  

 !

§  RBFS algorithm!
§  Recursive Best First Search!

§  Hill climbing, steepest descent, greedy search!
§  Special case of A* when successor with best F is retained; no 

backtracking !

§  Beam search!
§  Special case of A* where only some limited number, W (beam 

width), of best evaluated open nodes are kept!

We will look at 
• A*!
• IDA*!
• RBFS!


