Grammar Rules in Prolog

© Gunnar Gotshalks GR-1

Backus-Naur Form (BNF)

¢ BNF is a common grammar used to define programming
languages

» Developed in the late 1950’s

0 Because grammars are used to describe a language they
are said to produce sentences

© Gunnar Gotshalks GR-2

Grammars and Design

¢ Grammars can be used to describe the structure of
objects and computations.

» Can be used to describe the structure of input
> Parse

» Can be used to generate output
> Compute

» Can be used to describe the structure of
algorithms

> Design

© Gunnar Gotshalks

GR-3

Grammar Definition

¢ A grammar, G, is a 4-tuple G =<T, N, S, P>, where
» T — a set of terminal symbols
> They represent themselves
— A, begin, 123

» N — a set of non-terminal symbols

> They are enclosed between ‘<’ and ‘>’
— <program> <while> <letter> <digit>

» S € N - the starting symbol

© Gunnar Gotshalks

GR-4

Grammar Definition — 2

» P —is a finite set of production or rewrite rules of
the form
o:=p

> O and ,B are sequences, strings, of terminal and
non-terminal symbols

>| | =1

> O contains at least one non-terminal symbol

© Gunnar Gotshalks GR-5

Types of Grammars

¢ Type 0 — Unrestricted or General grammars
» Correspond to Turing machines
» Can compute anything

¢ Type 1 — Context sensitive grammars
» In general not used, as they are too complex

¢ Type 2 — Context free grammars

» Often used to describe the structure of
programming languages

© Gunnar Gotshalks

GR-6

Types of Grammars — 2

¢ Type 3 — Regular grammars
» Correspond
> Regular expressions
> Finite state machines

» Most business problems can be described with
regular grammars

> Although context free grammars are used, due
to their ease of use

© Gunnar Gotshalks GR-7

Unrestricted Grammar

¢ No restrictions on the definition
» In particular permits |31 <1 XI|
> Permits erasure of terminal symbols

© Gunnar Gotshalks GR-8

Context Sensitive Grammar

¢ Restrict productions such that there is no erasure
» I glzlal
> One exception is that the starting symbol may

be in the production <Start> ::= € to be able to
produce the empty sentence

¢ The following defines the language
A"Bc" forn=1

(1) < =<A>C

(2) <S> =<A><S>C

(3) <A> ::=<A>

(4) C ::==BC (5)B ::=BB
(6) <A>B::=AB (7)<A>A::=AA

© Gunnar Gotshalks GR-9

Context Free Grammar

0 Restrict & to be a single non-terminal
»lol =1
> This permits non-terminals to be removed

— Note there is no erasure as terminals cannot be
removed

¢ The following defines the language
A" B" forn=0

(1) <S> ::
(2) <S> ::

E
A <S> B

© Gunnar Gotshalks GR-10

Regular Grammar

¢ Restrict &¢ to be a single non-terminal

¢ Restrict [to have at most one non-terminal, with the non-
terminal, if it occurs, being at either end of 3

>>Iﬁ|z1

> One exception is that the starting symbol may

be in the production <Start> ::= € to be able to
produce the empty sentence

¢ Can restrict, without loss of generality to productions of the
following structure giving a Right Regular Grammar

(1) <non terminal> ::= terminal
(2) <non terminal> ::= terminal <non terminal>

© Gunnar Gotshalks GR-11

Sentence Generation for A" B"

0 <S> —> € Rule 1
0 <S> —> A<S>B Rule 2
— AB Rule 1
O <S> —> A<S>B Rule 2
—> AA<S>BB Rule 2
—>AABB Rule 1
O <S> —> A<S>B Rule 2

— AA<S>BB Rule 2
— A AA<S>BBB Rule 2
— AAABBB Rule 1

© Gunnar Gotshalks

GR-12

Parsing & Prolog

¢ Parsing is the opposite of sentence generation

» Task is to find a sequence of rules that produce a
given sentence

¢ Prolog has a built-in notation for representing grammar
rules called Definitive Context Grammar (DCQG)

© Gunnar Gotshalks GR-13

Parsing & Prolog — 2

¢ Ina DCG the grammar for A" BN s represented as
follows

(1) S->[A],[B].
(2) S-->[A],S,[B].

Upper case is used in the slide for easier reading, in
Prolog lower case (constants) would be used for A
and B and not upper case (variables).

© Gunnar Gotshalks GR-14

DCG Translation

¢ DCG statements are translated into Prolog

¢ The following are examples.
n-->n1,n2,...,Nn.

n (S, Rest) :-
ni1(S, R2), n2(R2, R3), ..., nn(Rn, Rest).

n-->[T1],[T2],...[Tn].

n([T1, T2, ..., Tnl Rest], Rest).
n-->n1,[T2],n3,[T4].

n(S, Rest) :- n1(S, [T2 1 R3]), n3(R3, [T4 | Rest]) .
n-->[T1],n2,[T3],n4.

n([T1 | R2], Rest) :-
n2(R2, [T3 | R4]) , n4(R4, Rest) .

© Gunnar Gotshalks GR-15

Translation of A" B"

S->[A],[B].
S">[A],S,[B].

——
s([a,blRest], Rest).

s([alR1],Rest):-s(R1,[bl Rest]).

¢ Every sentence is represented by 2 lists
» Difference lists of symbols
> The first list is the sentence you are parsing

> The second list is the part of the sentence that
is left-over when parsing is done

s([a,b],[])
s([la,a,b,b],[]).
s([la,a,b,b,c],|[c]).

Sample
queries

© Gunnar Gotshalks GR-16

Movement example

move --> step. Example queries

move --> step, move.

step --> [up]. move ([up, up, down], []).

step --> [down]. move ([up, up, left] , []).
move ([up, M, up], []).

Translation

move (List, Rest) :- step (List, Rest).
move (List1, Rest) :- step (List1, List2) , move (List2, Rest).
step ([up | Rest], Rest).

step ([down | Rest] , Rest).

© Gunnar Gotshalks GR-17

P is a T example using determinants

parse-->[P],[is,a], [T].

Example query
parse ([‘John’ ,is,a, person, . 1,[1]).

Translation

parse (S, Sr) :-det1 (S, S0)
, det2 (S0, S1)
, det3 (S1,S2)
, detd (S2, Sr).

det1 ([PISt], St).

det2 ([is,al St], St).

det3([TISt], St).

detd (['. I St], St).

© Gunnar Gotshalks GR-18

Grammars & Algorithms

¢ Unrestricted grammars have been used to write programs

» Snobol language was used to develop a system
called MUMPS that was used in hospital
applications circa 1960’s-1970’s

© Gunnar Gotshalks GR-19

SNOBOL

¢ In Snobol a grammar is defined to translate (rewrite) an
iInput string of symbols to an output string of symbols

» The production rules are applied using the Markov
algorithm

> Developed during the 1940's as yet another
description of what it means to compute

» Works in a similar way to Prolog

> Pattern matching takes place on strings, instead
of compound terms

© Gunnar Gotshalks GR-20

Markov Algorithm

¢ Input
» A numbered set of productions @ — 3
> Numbering is from 1 up
» An input string — maStr — over the alphabet
> No distinction needed for terminals and non-
terminals
¢ Computation
» The productions are applied to the sequence of
strings beginning with the input string
¢ Qutput

» The resulting string when no production is
applicable

© Gunnar Gotshalks

GR-21

Markov Algorithm

PROCEDURE
VAR j : integer { An index to a production.}
; k:integer { An index to the occurrence

of an alpha [j] in maStr.}
; nOtAtEnd : boolean { Goes FALSE when algorithm is done.}

; BEGIN

ji=1 { Start at production 1.}
 notAtEnd := true

; WHILE notAtEnd DO BEGIN
... DO loop body — see next slide
END
END

© Gunnar Gotshalks GR-22

Markov Algorithm Body of Loop

{ Find left most occurrence of alpha.}
K:=index (maStr, 1, alpha[j])

; IF k=0 THEN {No alpha, try the next production.}
BEGIN j := j+1 {No alpha, try the next production.}
, IF j > prodCount {Do we have a production to try?}
THEN notAtEnd :=false {No production, stop.}
END
END
ELSE BEGIN {Found alpha, apply production.}
replace (maStr, beta[j], k, alpha[j]. length)
j=1 {Start with first production again.}
END
END

© Gunnar Gotshalks GR-23

MA Add two binary numbers

¢ Alphabet
» 0 1 <- The binary digits.
» a <- Remember a 1.
» b <- Remember a 0.
» C <- Remember a carry.
» N <- A1inthe sum.
» Z <- A 0in the sum.

» X <- Separator for the two input numbers.

© Gunnar Gotshalks GR-24

MA Add two binary numbers — 2

¢ Productions
» al->1a;a0->0a; <- Travel right with a one
» b1 ->1b ; b0 ->0b ; <- Travel to right with a zero
» 1c->¢c0;0c->1;c->1; <-Propagate a carry
» la->cZ;0a->N; Xa->N ;<- Add one to least sig digit

of n2

» 1b->N ;0b->2Z; Xb->Z; <- Add zero to least sig
digit of n2

» 1X->Xa ; 0X -> Xb ; <- Move least sig digit of

n1 to add position
» N->1;Z->0; <- Recover all zeros and ones

¢ An input string
» 101X1101

© Gunnar Gotshalks GR-25

SNOBOL - Syntactic Sugar

¢ Some productions terminate with a period
» If such a production is applied, the computation
terminates

¢ Some productions are labeled

¢ Some productions have success and failure tags

» If such a production is applied, the Markov
algorithm resumes from the production labeled by
the success tag

» If such a production is not applied, then the Markov
algorithm resumes from the production labeled by
the failure tag

© Gunnar Gotshalks GR-26

