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Prolog and the!
Resolution Method!

!
The Logical Basis of Prolog!

!
!
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Background!

◊  Prolog is based on the resolution proof method 
developed by Robinson in 1965.!
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Background – 2!

◊  Prolog is based on the resolution proof method developed by 
Robinson in 1966.!

◊  Complete proof system with only one rule.!
»  If something can be proven from a set of logical 

formulae, the method finds it.!

!
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Background – 3!

◊  Prolog is based on the resolution proof method developed by 
Robinson in 1966.!

◊  Complete proof system with only one rule.!
»  If something can be proven from a set of logical formulae, 

the method finds it.!

◊  Correct!
» Only theorems will be proven, nothing else.!

!
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Background – 4!

◊  Prolog is based on the resolution proof method developed by 
Robinson in 1966.!

◊  Complete proof system with only one rule.!
»  If something can be proven from a set of logical formulae, 

the method finds it.!

◊  Correct!
»  Only theorems will be proven, nothing else.!

◊  Proof by contradiction!
»   Add  negation of a purported theorem to a body of 

axioms and previous proven theorems!
» Show resulting system is contradictory!
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Propositional Logic!

◊  Infinite list of propositional variables!
» a, b, … , z, p1 … pn , q1 … qr, …!
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Propositional Logic – 2!

◊  Infinite list of propositional variables!
»  a, b, … , z, p1 … pn , q1 … qr, …!

◊  Every variable represents 0 or 1 (True or False)!
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Propositional Logic – 3!

◊  Infinite list of propositional variables!
»  a, b, … , z, p1 … pn , qn … qr, …!

◊  Every variable represents 0 or 1 (True or False)!

◊  Logical connectives!
»   ~ (not)       (and)       (or)        (implies)         (iff)!∧ ∨ → ↔
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Propositional Logic – 4!

◊  Infinite list of propositional variables!
»  a, b, … , z, p1 … pn , qn … qr, …!

◊  Every variable represents 0 or 1 (True or False)!

◊  Logical connectives!
»   ~ (not)         (and)         (or)         (implies)              (iff)!

◊  The set of formula’s of propositional logic is the 
smallest set, FOR, such that!
» Every propositional variable is in FOR!
»  If A and B are elements of FOR then 

 ~ A      A     B     A    B      A      B      A      B 
 are elements of FOR!

∧ ∨ → ↔

∧ ∨ → ↔
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Propositional clauses – informal!

◊  Have a collection of clauses in conjunctive normal form!
» Each clause is a set of propositions connected 

with or!
» Propositions can be negated (use   not    ~ ) !
» set of clauses implicitly and’ed together  

!

◊  Example!
   A  or  B!
   C  or  D  or  ~E!
   F!

   ==>!
   ( A  or  B )  and  ( C  or  D  or  ~E )  and  F!
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Clausal Form!

◊  A clause is an expression of the following form, called 
clausal form!

l0, l1, l2, … lk        d0, d1, d2, … dm!

commas are!
disjunctions!

commas are!
conjunctions!

←
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Clausal Form – 2!

◊  We have the following clausal form!

 
The following equivalence holds!

l0, l1, l2, … lk        d0, d1, d2, … dm!
commas are!
disjunctions!

commas are!
conjunctions!

a       b            a     ~ b!

←

← ≡ ∨
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Clausal Form – 3!

◊  We have the following clausal form!

 
The following equivalence holds!

l0, l1, l2, … lk        d0, d1, d2, … dm!
commas are!
disjunctions!

commas are!
conjunctions!

a       b            a     ~ b!

l0     l1     l2      …     lk     ~( d0     d1     d2      …      dm)!
As a consequence the clausal form can be written as!

←

← ≡ ∨

∨∨∨∨∨ ∧∧∧∧
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Clausal Form – 4!

◊  We have the following clausal form!

 
The following equivalence holds!

l0, l1, l2, … lk        d0, d1, d2, … dm!
commas are!
disjunctions!

commas are!
conjunctions!

a       b            a     ~ b!

l0     l1     l2      …     lk     ~( d0     d1     d2      …      dm)!
As a consequence the clausal form can be written as!

Using de’Morgans law!

l0     l1     l2     …     lk      ~d0     ~d1     ~d2    …     ~dm!

←

← ≡ ∨

∨∨∨∨∨∨∨∨

∨∨∨∨∨

∨

∧∧∧∧
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Conjunctive Normal Form!

◊  If S = { c0 , c1 , c2 , … ck } are a set of clauses then the 
representation of S is the formula!

  = (   c0      c1      c2    …       ck )!α α α α α∧ ∧∧∧
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Conjunctive Normal Form – 2!

◊  If S = { c0 , c1 , c2 , … ck } are a set of clauses then the 
representation of S is the formula!

◊     ci  is a disjunction of variables and their negations!

  = (   c0      c1      c2    …       ck )!

 l0    l1     l2     …     lk     ~d0     ~d1     ~d2     …     ~dm!

α α α α

α

α

∨∨∨∨∨∨∨∨ ∨

∧ ∧∧∧
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Conjunctive Normal Form – 3!

◊  If S = { c0 , c1 , c2 , … ck } are a set of clauses then the 
representation of S is the formula!

◊     ci  is a disjunction of variables and their negations!

◊       is a conjunction of these disjunctions!

  = (   c0      c1      c2    …       ck )!

 l0    l1     l2     …     lk     ~d0     ~d1     ~d2     …     ~dm!

α α α α

α

α

∨∨∨∨∨∨∨∨ ∨

α

∧ ∧∧∧



RES-18	

© Gunnar Gotshalks!

Conjunctive Normal Form – 4!

◊  If S = { c0 , c1 , c2 , … ck } are a set of clauses then the 
representation of S is the formula!

◊     ci  is a disjunction of variables and their negations!

◊       is a conjunction of these disjunctions!

◊       is in CNF (conjunctive normal form)!

  = (   c0      c1      c2    …       ck )!

 l0    l1     l2     …     lk     ~d0     ~d1     ~d2     …     ~dm!

α α α α

α

α

∨∨∨∨∨∨∨∨ ∨

α

α

∧ ∧∧∧
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Conjunctive Normal Form – 5!

◊  If S = { c0 , c1 , c2 , … ck } are a set of clauses then the 
representation of S is the formula!

◊     ci  is a disjunction of variables and their negations!

◊       is a conjunction of these disjunctions!

◊       is in CNF (conjunctive normal form)!

  = (   c0      c1      c2    …       ck )!

Every formula can be converted to CNF!

 l0    l1     l2     …     lk     ~d0     ~d1     ~d2     …     ~dm!

α α α α

α

α

∨∨∨∨∨∨∨∨ ∨

α

α

∧ ∧∧∧
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Contradiction in a set of clauses!

◊  The set   { p    ~ p } is a contradiction of clauses!∧
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Contradiction in a set of clauses – 2!

◊  The set   { p    ~ p } is a contradiction of clauses!

◊  In clausal form this is!

!

!
p               if true then p!
     p          if p then false!

∧

←
←
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Contradiction in a set of clauses – 3!

◊  The set   { p    ~ p } is a contradiction of clauses!

◊  In clausal form this is!

!

◊  We say that resolving upon p gives [ ] the empty clause, 
which is false.!

∧

p               if true then p!
     p          if p then false!←
←
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Propositional case – Resolution!

◊  What if there is a contradiction in the set of clauses!
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Propositional case – Resolution – 2!

◊  What if there is a contradiction in the set of clauses!

◊  Example – only one clause!
   P!



RES-25	

© Gunnar Gotshalks!

Propositional case – Resolution – 3!

◊  What if there is a contradiction in the set of clauses!

◊  Example – only one clause!
   P!

◊  Add ~P to the set of clauses!
   P 

~P 
       ==>!

   P and ~P 
       ==> 
[ ]    !-- null the empty clause is false!
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Propositional case – Resolution – 4!

◊  What if there is a contradiction in the set of clauses!

◊  Example – only one clause!
   P!

◊  Add ~P to the set of clauses!
   P 

~P 
       ==>!

   P and ~P 
       ==> 
[ ]    !-- null the empty clause is false!

◊  Think of P and ~P canceling each other out of existence!
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◊  Given the clause!
   Q  or  ~R!

◊  and the clause!
   R  or P!

◊  then resolving the two clauses is the following!
   ( Q  or  ~R )  and  ( R  or  P )  

    ==> 
P or Q !-- new clause that can be added to the set!

◊  Combining two clauses with a positive proposition and its 
negation (called literals) leads to adding a new clause to 
the set of clauses consisting of all the literals in both 
parent clauses except for the literals resolved on!

Resolution rule!

Cancel each other!
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◊  Given the clause!
   L1 or  L2 or … or Lp or  ~R!

◊  and the clause!
   R  or K1 or K2 or … or Kq!

◊  then resolving the two clauses on R is the following!
(L1 or  L2 or … or Lp or  ~R )  and  ( R  or K1 or K2 or … or Kq)  

    ==>!
(L1 or  L2 or … or Lp or K1 or K2 or … or Kq) !
!

 A new clause that can be added to the set!

Resolution rule – 2!

Cancel each other!
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Resolution method!

◊  Combine clauses using resolution to find the empty clause!
»  Implies one or more of the clauses is false.!

◊  Given the clauses!
   1!   P 

2   ~P  or  Q 
3   ~ Q  or  R  
4   ~R!

◊  Can resolve as follows!
   5   P  and  ( ~P  or Q )  ==>   Q !resolve 1 and 2!
   6   Q  and  ( ~Q  or  R )  ==>   R    !resolve 5 and 3!
   7   R  and  ~R  ==>   []! ! !resolve 6 and 4!
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Proving a theorem!

1   Given a set of non contradictory clauses 
! – assume the set of clauses is true!

   P 
~P  or  Q 
~ Q  or  R!
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Proving a theorem – 2!

1   Given a set of non contradictory clauses 
! – assume the set of clauses is true!

   P 
~P  or  Q 
~ Q  or  R !

2  Add the negation of the theorem, R , to be proven true!
   ~R!
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Proving a theorem – 3!

1   Given a set of non contradictory clauses 
! – assume the set of clauses is true!

   P 
~P  or  Q 
~ Q  or  R !

2  Add the negation of the theorem, R , to be proven true!
   ~R!

–  If R is true, then the clause set now contains a 
contradiction	
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Proving a theorem – 4!

1   Given a set of non contradictory clauses 
! – assume the set of clauses is true!

   P 
~P  or  Q 
~ Q  or  ~R !

2  Add the negation of the theorem, ~R , to be proven true!
   R!

–  Clause set now contains a contradiction	



3 !Find [ ] – showing that a contradiction exists, 
(see the slide Resolution Method)!

!
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Proving a theorem – 4!

1   Given a set of non contradictory clauses 
! – assume the set of clauses is true!

   P 
~P  or  Q 
~ Q  or  ~R !

2  Add the negation of the theorem, ~R , to be proven true!
   R!

–  Clause set now contains a contradiction	



3 !Find [] – showing that a contradiction exists, (see the slide 
Resolution Method)!

4   Finding [ ] implies ~R is false, hence the theorem, R, 
is true !
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Resolution method problems!

◊  In general resolution leads to longer and longer 
clauses!
» Length 2 & length 2  –> length 2 !no shorter!

» Length 3 & length 2 –> length 3 !no shorter!

»  In general 
length p & length q –> length p + q – 2 !longer!
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Resolution method problems – 2!

◊  In general resolution leads to longer and longer clauses!
»  Length 2 & length 2  --> length 2 !
»  Length 3 & length 2 –> length 3!
»  In general length p & length q --> length p + q - 2!

◊  Non trivial to find the sequence of resolution rule 
applications needed to find [ ]!
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Resolution method problems – 3!

◊  In general resolution leads to longer and longer clauses!
»  Length 2 & length 2  --> length 2 (see earlier slide) – no 

shorter!
»  Length 3 & length 2 –> length 3 (longer)!
»  In general length p & length q --> length p + q - 2 (see earlier 

slide) !

◊  Non trivial to find the sequence of resolution rule applications 
needed to find [ ]!

◊  But at least there is only one rule to consider, which 
has helped automated theorem proving!
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The Big Question!

How does all this relate to Prolog?!
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If A then B – Propositional case!

◊  Example 1:  In Prolog we write!
   A  :-  B.!

◊  Which in logic is!
   A if B  ==>  if B then A!
              ==>  A or ~B!

◊  Example 2!
   A  :-  B  ,  C  ,  D.!
   A if B  and C and D !
             ==>  if B and C and D then A!
             ==>  A  or  ~B  or  ~C  or  ~D!

Clausal form!
A      B!

Clausal form!
A      B, C, D!

←

←
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If A then B – Propositional case – 2!

◊  Example 3!
   if B and C and D then P and Q and R!
   ==>  ~B  or  ~C  or  ~D  or  ( P and Q and R )!
   ==>  ( ~B  or  ~C  or  ~D )  or  ( P and Q and R )!
   ==>  ~B  or  ~C  or  ~D  or  P 

        ~B  or  ~C  or  ~D  or  Q 
        ~B  or  ~C  or  ~D  or  R!

>  In Prolog!
   P :- B , C , D. 

Q :- B , C , D. 
R :- B , C , D.!

Clausal form!
P      B, C, D!
Q      B, C, D!
R      B, C, D!

distribution!

←
←
←
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If A then B – Propositional case – 4!

◊  Example 4!
   if B and C and D then P or Q or R!
   ==>  ~B  or  ~C  or  ~D  or  P or Q or R!

!
!

   P  :-  B  ,  C  ,  D  ,  ~Q  ,  ~R  
Q  :-  B  ,  C  ,  D  ,  ~P  ,  ~R  
R  :-  B  ,  C  ,  D  ,  ~P  ,  ~Q	



Clausal form    P, Q, R      B, C, D!

No single statement in Prolog for such an if ... then ... 
Choose one or more of the following depending upon 
the expected queries and database!

←
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If A then B – Propositional case – 5!

◊  Example 5!
   if  the_moon_is_made_of_green_cheese !
   then  pigs_can_fly!
   ==>!
   ~ the_moon_is_made_of_green_cheese  or  

pigs_can_fly 
!

>  In Prolog!
   pigs_can_fly :- 

              the_moon_is_made_of_green_cheese!
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Prolog facts – propositional case!

◊  Prolog facts are just themselves.!
   a.  

b. 
the_moon_is_made_of_green_cheese. 
pigs_can_fly.!

◊  Comes from!
   if  true  then pigs_can_fly!
   ==> pigs_can_fly  or  ~true  

==> pigs_can_fly  or  false  
==> pigs_can_fly!

◊  In Prolog!
   pigs_can_fly :- true !:- true is implied, 

                                         so it is not written!
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Query!

◊  A query "A and B and C", when negated is equivalent to!
   if   A and B and C  then  false!

>  insert the negation into the database, expecting 
to find a contradiction!

◊  Translates to!
   false or ~A or ~B or ~C!
   ==> ~A or ~B or ~C!
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Is it true pigs_fly?!

◊  Add the negated query to the database!
   If pigs_fly then false!
   ==>   ~pigs_fly   or  false    ==>   ~pigs_fly!

◊  If the database contains!
   pigs_fly!

◊  Then resolution obtains [ ], the contradiction, so the 
negated query is false, so the query is true.!
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Fact or Query?!

◊  Prolog distinguishes between facts and queries depending 
upon the mode in which it is being used.  In (re)consult 
mode we are entering facts.  Otherwise we are entering 
queries.!
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A longer example!

1   pigs_fly :- pigs_exist , animals_can_fly. 
!==> pigs_fly     ~pigs_exist     ~animals_can_fly 

2   pigs_are_pink.!
!==> pigs_are_pink!

3   pigs_exist.!
!==> pigs_exist!

4   birds_can_fly.!
!==> birds_can_fly!

5   animals_can_fly.!
!==> animals_can_fly 
 
Hypothesize that pigs can fly!

6   :- pigs_fly.!
!==> ~pigs_fly!

∨∨
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A longer example – 2!

Resolve 6 & 1  ==>!
7 !~pigs_exist     ~animals_can_fly  

!
Resolve 7 & 3  ==>!
8 !~animals_can_fly  

!
Resolve 8 & 5  ==>!
9  [ ] 

!
We have the empty clause – a refutation!
As a consequence, the negated statement is false,!
the original statement, pigs_fly, is true.!

∨
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Predicate Calculus!

◊  Step up to predicate calculus as resolution is not 
interesting at the propositional level.!

!
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Predicate Calculus – 2!

◊  Step up to predicate calculus as resolution is not interesting at 
the propositional level.!

◊  We add!
»  the universal quantifier – for all x –         x!
»   the existential quantifier – there exists an x –        x!

∀
∃
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Predicate Calculus – 3!

◊  Step up to predicate calculus as resolution is not interesting at 
the propositional level.!

◊  We add!
»  the universal quantifier – for all x –        x!
»   the existential quantifier – there exists an x –        x!

◊  But in Prolog there are no quantifiers?!
» They are represented in a different way!

∃
∀
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Forall x –      x "x !

◊  The universal quantifier is used in expressions such as the 
following!
        x • P ( x )!

> For all x it is the case that P ( x ) is true!

       x • lovesBarney ( x )!
> For all x it is the case that lovesBarney ( x ) is 

true!

∀

∀

∀
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Forall x –      x – 2 "x !

◊  The universal quantifier is used in expressions such as the 
following!
        x • P ( x )!

>  For all x it is the case that P ( x ) is true!
        x • lovesBarney ( x )!

>  For all x it is the case that lovesBarney ( x ) is true!
◊  The use of variables in Prolog takes the place of 

universal quantification – a variable implies universal 
quantification!
   P ( X )!

> For all X it is the case that P ( X ) is true!
   lovesBarney ( X )!

> For all x it is the case that lovesBarney ( X ) is 
true!

∀

∀

∀
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Exists x –      x x!

◊  The existential quantifier is used in expressions such as 
the following!
        x • P(x)!

> There exists an x such that P ( x ) is true!
        x • lovesBarney ( x )!

> There exists an x such that lovesBarney ( x ) is true!

∃

∃

∃
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Exists x –      x – 2 x!

◊  The existential quantifier is used in expressions such as the 
following!
        x • P(x)!

>  There exists an x such that P(x) is true!
       x • lovesBarney ( x )!

>  There exists an x such that lovesBarney(x) is true!
◊  Constants in Prolog take the place of existential 

quantification!
The constant is a value of x that satisfies existence	



   P ( a )             a is an instance such that P ( a ) is true!
   lovesBarney ( elliot )  elliot is an instance such that 

                                     lovesBarney ( elliot ) is true!

∃

∃

∃
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Nested quantification!

◊     x      y • sisterOf ( x , y )!
> There exists an x such that there exists a y such 

that x is the sister of y!
>  In Prolog introduce two constants!

   sisterOf (mary , eliza )!

◊     x      y • sisterOf ( x , y )!
> There exists an x such that forall y it is the case 

that x is the sister of y!
   sisterOf ( leila , Y )!

> One constant for all values of Y!

∃ ∃

∃ ∀
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Nested quantification – 2!

◊     x       y • sisterOf ( x , y )!
> For all x there exists a y such that x is the sister 

of y!
> The value of y depends upon which X is chosen, 

so Y becomes a function of X!
   sisterOf ( X , f ( X  ) )!

◊     x       y • sisterOf ( x , y )!
> For all x and for all y it is the case that x is the 

sister of y!
   sisterOf ( X , Y )!

> Two independent variables!

∃∀

∀∀
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Nested quantification – 3!

◊     x      y     z • P ( z )!
> For all x and for all y there exists a z such that 

P(z) is true!
> The value of z depends upon both x and y, and 

so becomes a function of X and Y!
   P ( g ( X , Y ) )!

◊     x      y     z      w • P ( x , y , z , w )!
> For all x there exists a y such that for all z there 

exists a w such that P(x, y, z, w) is true!
> The value of y depends upon x, while the value 

of w depends upon both x and z!
   P ( X , h ( X ) , Z ,  g ( X , Z ) )!

∃

∃ ∃

∀ ∀

∀ ∀
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Skolemization!

◊  Removing quantifiers by introducing variables and 
constants is called skolemization 
!
» Named after the Norwegian mathematician 

Thoralf Skolem !
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Skolemization – 2!

◊  Removing quantifiers by introducing variables and constants is 
called skolemization  
!

◊  Removal of        gives us functions, and constants, 
which are functions with no arguments.!
» Functions in Prolog are the compound terms!

∃
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Skolemization – 3!

◊  Removing quantifiers by introducing variables and constants is 
called skolemization !

◊  Removal of          gives us functions and constants – functions with 
no arguments.!
»  Functions in Prolog are the compound terms 
!

◊  Removal of         gives us variables!

!

∃

∀
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Skolemization – 4!

◊  Removing quantifiers by introducing variables and constants is 
called skolemization !

◊  Removal of         gives us functions and constants – functions with 
no arguments.!
»  Functions in Prolog are called structures or compound terms!

◊  Removal of          gives us variables 
!

◊  Each predicate is called a literal !

∀

∃
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Herbrand universe!

◊  The transitive closure of the constants and functions is 
called the Herbrand universe!

>  In general it is infinite!
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Herbrand universe – 2!

◊  The transitive closure of the constants and functions is 
called the Herbrand universe!

>   – In general it is infinite!
!

◊  A Prolog database defines predicates over the Herbrand 
universe defined by the database!
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Herbrand universe – 3!

◊  The transitive closure of the constants and functions is 
called the Herbrand universe!

>   – In general it is infinite!
!

◊  A Prolog database defines predicates over the Herbrand 
universe defined by the database!

> The compound terms in the database determine 
the Herbrand universe!
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Herbrand universe – Determination!

◊  It is the union of all constants and the recursive application 
of functions to constants!
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Herbrand universe – Determination – 2!

◊  It is the union of all constants and the recursive application 
of functions to constants!
» Level 0 – Base level – is the set of constants!
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Herbrand universe – Determination – 3!

◊  It is the union of all constants and the recursive application of 
functions to constants!
»  Level 0 – Base level – is the set of constants 
!

» Level 1 constants are obtained by the substitution 
of level 0 constants for all the variables in the 
functions in all possible ways!
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Herbrand universe – Determination – 4!

◊  It is the union of all constants and the recursive application of 
functions to constants!
»  Level 0 – Base level – is the set of constants!
»  Level 1 constants are obtained by the substitution of level 0 

constants for all the variables in the functions in all possible 
ways 
!

» Level 2  constants are obtained by the substitution 
of level 0 and level 1 constants for all the variables 
in the functions in all possible ways!
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Herbrand universe – Determination – 5!

◊  It is the union of all constants and the recursive application of 
functions to constants!
»  Level 0 – Base level – is the set of constants!
»  Level 1 constants are obtained by the substitution of level 0 

constants for all the variables in the functions in all possible 
ways!

»  Level 2  constants are obtained by the substitution of level 0 
and level 1 constants for all the variables in the functions in 
all possible ways 
!

» Level n constants are obtained by the substitution 
of all level 0 .. n-1 constants for all variables in the 
functions in all possible ways!
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Back to Resolution!

◊  Predicate calculus case is similar to the propositional 
case in that resolution combines two clauses where 
two literals cancel each other!
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Back to Resolution – 2!

◊  Predicate calculus case is similar to the propositional case in 
that resolution combines two clauses where two literals cancel 
each other 
!

◊  With variables and constants we use pattern matching 
to find the most general unifier (binding list for 
variables) between two literals!
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Back to Resolution – 3!

◊  Predicate calculus case is similar to the propositional case in 
that resolution combines two clauses where two literals cancel 
each other!

◊  With variables and constants we use pattern matching to find 
the most general unifier (binding list for variables) between two 
literals 
!

◊  The unifier is applied to all the literals in the two 
clauses being resolved!

!
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Back to Resolution – 4!

◊  Predicate calculus case is similar to the propositional case in 
that resolution combines two clauses where two literals cancel 
each other!

◊  With variables and constants we use pattern matching to find 
the most general unifier (binding list for variables) between two 
literals!

◊  The unifier is applied to all the literals in the two clauses being 
resolved  
!

◊  All the literals, except for the two which were unified, 
in both clauses are combined with “or”!
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Back to Resolution – 5!

◊  Predicate calculus case is similar to the propositional case in 
that resolution combines two clauses where two literals cancel 
each other!

◊  With variables and constants we use pattern matching to find 
the most general unifier (binding list for variables) between two 
literals!

◊  The unifier is applied to all the literals in the two clauses being 
resolved!

◊  All the literals, except for the two which were unified, in both 
clauses are combined with “or” 
!

◊  The new clause is added to the set of clauses!
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Back to Resolution – 6!

◊  Predicate calculus case is similar to the propositional case in 
that resolution combines two clauses where two literals cancel 
each other!

◊  With variables and constants we use pattern matching to find 
the most general unifier (binding list for variables) between two 
literals!

◊  The unifier is applied to all the literals in the two clauses being 
resolved!

◊  All the literals, except for the two which were unified, in both 
clauses are combined with “or”!

◊  The new clause is added to the set of clauses 
!

◊  When [ ] is found, the bindings in the path back to the 
query give the answer to the query!
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Example!

◊  Given the following clauses in the database!
   person ( bob ).!
   ~person ( X ) or mortal ( X ). 

                      forall X • if person ( X ) then mortal ( X )!

◊  Lets make a query asking if bob is a person!

◊  The query adds the following to the database!
   ~person ( bob ).!

◊  Resolution with the first clause is immediate with no 
unification required!

◊  The empty clause is obtained  
So ~person(bob) is false, therefore person(bob) is true!
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Example – 2!

◊  Given the following clauses in the database!
   person ( bob ).!
   ~person ( X ) or mortal ( X ). 

                      forall X • if person ( X ) then mortal ( X )!

◊  Lets make a query asking if bob is mortal!
◊  The query adds the following to the database!

   ~mortal ( bob ).!

◊  Resolution with the second clause  gives with   X_1 = bob 
(renaming is required!)!
   ~person ( bob ).!

◊  Resolution with the first clause gives [ ] 
So ~mortal(bob) is false, therefore mortal(bob) is true!
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Example – 3!

◊  Given the following clauses in the database!
   person ( bob ). 

~person ( X ) or mortal ( X ).!

◊  Lets make a query asking does a mortal exist 
The query adds the following to the database!
   ~mortal ( X ).      ~ (    x • mortal ( x ) ) -- negated query!

◊  Resolution with the second clause  gives  with  X_1 = X 
(renaming is required!)!
   ~person ( X_1 ).!

◊  Resolution with the first clause gives [] with X_1 = bob 
So ~mortal(X) is false, therefore mortal(X) is true with  
                     bob = X_1 = X!

∀
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Example – 4!

◊  Given the following clauses in the database!
   person ( bob ). 

~person ( X ) or mortal ( X ).!

◊  Lets make a query asking if alice is mortal!
   ~mortal ( alice ).!

◊  Resolution fails with the first clause but succeeds with the 
second clause gives with  X_1 = alice !
   ~person ( alice ).!

◊  Resolution with the first clause and second clause fails, 
searching the database is exhausted without finding [ ]!

◊  So ~mortal(alice) is true, therefore mortal(alice) is false!
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Example – 4 cont'd!

◊  Actually all that the previous query determined is that 
~mortal(alice) is consistent with the database and 
resolution was unable to obtain a contradiction!

Prolog searches are based on a	


closed universe	



	


Truth is relative to the database	
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Unification!

◊  In order to use the resolution method with predicate 
calculus we need to be able to find the most general 
unifier (mgu) between two literals.!

◊  p(a, b, c)    and    p(X, Y, Z)!
» mgu = { X / a , Y / b , Z / c }!

◊  f( g(a, b), a, g(a, b)    and    f( g(X, Y, X, g(X, y))!
» mgu = { X / a , Y / b , Z / a }!

◊  p(a, f(b, a), c)    and   p(X, f(X, Y), Z)!
» mgu does not exist!

◊  p(X, a, b)    and    p(Y, Y, b)!
» mgu = { X / Y , Y / a}!
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Factoring!

◊  General resolution permits unifying several literals at once 
by factoring!

> unifying two literals within the same clause, if 
they are of the same "sign", both positive, 
P(...) or P(...), or both negative, ~P(...) or ~P(...)!

◊  Why factor?!
> Gives shorter clauses, making it easier to find 

the empty clause!
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Factoring – 2!

◊  For example given the following clause!
   loves ( X , bob )  or  loves ( mary , Y )!

◊  We can factor (obtain the common instances) by unifying 
the two loves literals!
   loves ( mary , bob )     X = mary  and Y = bob!

◊  The factored clause is implied by the un-factored clause 
as it represents the subset of the cases that make the un-
factored clause true!

> Can be added to the database without 
contradiction!
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Creating a database!

◊  A large part of the work in creating a database is to 
convert general predicate calculus statements into 
conjunctive normal form. 
!

◊  Much of Chapter 10 of Clocksin & Mellish describes how 
this can be done.!
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Horn clauses!

◊  Clauses where the consequent is a single literal.!
> For example, X is the consequent in!

   If A and B and C then X!



RES-87	

© Gunnar Gotshalks!

Horn clauses – 2!

◊  Clauses where the consequent is a single literal.!
>  For example, X is the consequent in!

   If A and B and C then X!

◊  Horn clauses are important because, while resolution is 
complete, it usually leads to getting longer and longer 
clauses while finding contradiction means getting the 
empty clause!
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Horn clauses – 3!

◊  Clauses where the consequent is a single literal.!
>  For example, X is the consequent in!

   If A and B and C then X!

◊  Horn clauses are important because, while resolution is 
complete, it usually leads to getting longer and longer clauses 
while finding contradiction means getting the empty clause!
» Need to get shorter clauses or at least contain the 

growth in clause length!
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Horn clauses – 4!

◊  Clauses where the consequent is a single literal.!
>  For example, X is the consequent in!

   If A and B and C then X!

◊  Horn clauses are important because, while resolution is 
complete, it usually leads to getting longer and longer clauses 
while finding contradiction means getting the empty clause!
»  Need to get shorter clauses or at least contain the 

growth in clause length!
» General resolution can lead to exponential growth!
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Horn clauses – 5!

◊  Clauses where the consequent is a single literal.!
>  For example, X is the consequent in!

   If A and B and C then X!

◊  Horn clauses are important because, while resolution is 
complete, it usually leads to getting longer and longer clauses 
while finding contradiction means getting the empty clause!
»  Need to get shorter clauses or at least contain the 

growth in clauses!
»  General resolution can lead to exponential growth in 

both!
>  clause length!
>  size of the set of clauses!
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Horn clauses – 6!

◊  Horn clauses have the property!
> Every clause has at most one positive literal 

(un-negated) and zero or more negative literals!
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Horn clauses – 7!

◊  Horn clauses have the property!
> Every clause has at most one positive literal 

(un-negated) and zero or more negative literals!
   person ( bob ). 

mortal ( X )  ~person ( X )  
binTree ( t ( D , L , R ) ) 
       ~treeData ( D ) ~binTree ( L ) ~binTree ( R ).!
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Horn clauses – 8!

◊  Horn clauses have the property!
>  Every clause has at most one positive literal (un-

negated) and zero or more negative literals!
   person ( bob ). 

mortal ( X )  ~person ( X )  
binTree ( t ( D , L , R ) ) 
       ~treeData ( D ) ~binTree ( L ) ~binTree ( R ).!

◊  Facts are clauses with one positive literal and no negated 
literals, resolving with facts reduces the length of clauses!
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Horn clauses – 9!

◊  Horn clauses have the property!
>  Every clause has at most one positive literal (un-

negated) and zero or more negative literals!
   person ( bob ). 

mortal ( X )  ~person ( X )  
binTree ( t ( D , L , R ) ) 
       ~treeData ( D ) ~binTree ( L ) ~binTree ( R ).!

◊  Facts are clauses with one positive literal and no negated 
literals, resolving with facts reduces the length of clauses!

◊  Horn clauses can represent anything we can compute!
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Horn clauses – 10!

◊  Horn clauses have the property!
>  Every clause has at most one positive literal (un-

negated) and zero or more negative literals!
   person ( bob ). 

mortal ( X )  ~person ( X )  
binTree ( t ( D , L , R ) ) 
       ~treeData ( D ) ~binTree ( L ) ~binTree ( R ).!

◊  Facts are clauses with one positive literal and no negated 
literals, resolving with facts reduces the length of clauses!

◊  Horn clauses can represent anything we can compute!
» Any database and theorem that can be proven 

within first order predicate calculus can be 
translated into Horn clauses!


