
RES-1	

© Gunnar Gotshalks!

Prolog and the!
Resolution Method!

!
The Logical Basis of Prolog!

!
!

RES-2	

© Gunnar Gotshalks!

Background!

◊  Prolog is based on the resolution proof method
developed by Robinson in 1965.!

RES-3	

© Gunnar Gotshalks!

Background – 2!

◊  Prolog is based on the resolution proof method developed by
Robinson in 1966.!

◊  Complete proof system with only one rule.!
»  If something can be proven from a set of logical

formulae, the method finds it.!

!

RES-4	

© Gunnar Gotshalks!

Background – 3!

◊  Prolog is based on the resolution proof method developed by
Robinson in 1966.!

◊  Complete proof system with only one rule.!
»  If something can be proven from a set of logical formulae,

the method finds it.!

◊  Correct!
» Only theorems will be proven, nothing else.!

!

RES-5	

© Gunnar Gotshalks!

Background – 4!

◊  Prolog is based on the resolution proof method developed by
Robinson in 1966.!

◊  Complete proof system with only one rule.!
»  If something can be proven from a set of logical formulae,

the method finds it.!

◊  Correct!
»  Only theorems will be proven, nothing else.!

◊  Proof by contradiction!
»  Add negation of a purported theorem to a body of

axioms and previous proven theorems!
» Show resulting system is contradictory!

RES-6	

© Gunnar Gotshalks!

Propositional Logic!

◊  Infinite list of propositional variables!
» a, b, … , z, p1 … pn , q1 … qr, …!

RES-7	

© Gunnar Gotshalks!

Propositional Logic – 2!

◊  Infinite list of propositional variables!
»  a, b, … , z, p1 … pn , q1 … qr, …!

◊  Every variable represents 0 or 1 (True or False)!

RES-8	

© Gunnar Gotshalks!

Propositional Logic – 3!

◊  Infinite list of propositional variables!
»  a, b, … , z, p1 … pn , qn … qr, …!

◊  Every variable represents 0 or 1 (True or False)!

◊  Logical connectives!
»  ~ (not) (and) (or) (implies) (iff)!∧ ∨ → ↔

RES-9	

© Gunnar Gotshalks!

Propositional Logic – 4!

◊  Infinite list of propositional variables!
»  a, b, … , z, p1 … pn , qn … qr, …!

◊  Every variable represents 0 or 1 (True or False)!

◊  Logical connectives!
»  ~ (not) (and) (or) (implies) (iff)!

◊  The set of formula’s of propositional logic is the
smallest set, FOR, such that!
» Every propositional variable is in FOR!
»  If A and B are elements of FOR then 

 ~ A A B A B A B A B 
 are elements of FOR!

∧ ∨ → ↔

∧ ∨ → ↔

RES-10	

© Gunnar Gotshalks!

Propositional clauses – informal!

◊  Have a collection of clauses in conjunctive normal form!
» Each clause is a set of propositions connected

with or!
» Propositions can be negated (use not ~) !
» set of clauses implicitly and’ed together  

!

◊  Example!
   A or B!
   C or D or ~E!
   F!

   ==>!
   (A or B) and (C or D or ~E) and F!

RES-11	

© Gunnar Gotshalks!

Clausal Form!

◊  A clause is an expression of the following form, called
clausal form!

l0, l1, l2, … lk d0, d1, d2, … dm!

commas are!
disjunctions!

commas are!
conjunctions!

←

RES-12	

© Gunnar Gotshalks!

Clausal Form – 2!

◊  We have the following clausal form!

 
The following equivalence holds!

l0, l1, l2, … lk d0, d1, d2, … dm!
commas are!
disjunctions!

commas are!
conjunctions!

a b a ~ b!

←

← ≡ ∨

RES-13	

© Gunnar Gotshalks!

Clausal Form – 3!

◊  We have the following clausal form!

 
The following equivalence holds!

l0, l1, l2, … lk d0, d1, d2, … dm!
commas are!
disjunctions!

commas are!
conjunctions!

a b a ~ b!

l0 l1 l2 … lk ~(d0 d1 d2 … dm)!
As a consequence the clausal form can be written as!

←

← ≡ ∨

∨∨∨∨∨ ∧∧∧∧

RES-14	

© Gunnar Gotshalks!

Clausal Form – 4!

◊  We have the following clausal form!

 
The following equivalence holds!

l0, l1, l2, … lk d0, d1, d2, … dm!
commas are!
disjunctions!

commas are!
conjunctions!

a b a ~ b!

l0 l1 l2 … lk ~(d0 d1 d2 … dm)!
As a consequence the clausal form can be written as!

Using de’Morgans law!

l0 l1 l2 … lk ~d0 ~d1 ~d2 … ~dm!

←

← ≡ ∨

∨∨∨∨∨∨∨∨

∨∨∨∨∨

∨

∧∧∧∧

RES-15	

© Gunnar Gotshalks!

Conjunctive Normal Form!

◊  If S = { c0 , c1 , c2 , … ck } are a set of clauses then the
representation of S is the formula!

 = (c0 c1 c2 … ck)!α α α α α∧ ∧∧∧

RES-16	

© Gunnar Gotshalks!

Conjunctive Normal Form – 2!

◊  If S = { c0 , c1 , c2 , … ck } are a set of clauses then the
representation of S is the formula!

◊  ci is a disjunction of variables and their negations!

 = (c0 c1 c2 … ck)!

 l0 l1 l2 … lk ~d0 ~d1 ~d2 … ~dm!

α α α α

α

α

∨∨∨∨∨∨∨∨ ∨

∧ ∧∧∧

RES-17	

© Gunnar Gotshalks!

Conjunctive Normal Form – 3!

◊  If S = { c0 , c1 , c2 , … ck } are a set of clauses then the
representation of S is the formula!

◊  ci is a disjunction of variables and their negations!

◊  is a conjunction of these disjunctions!

 = (c0 c1 c2 … ck)!

 l0 l1 l2 … lk ~d0 ~d1 ~d2 … ~dm!

α α α α

α

α

∨∨∨∨∨∨∨∨ ∨

α

∧ ∧∧∧

RES-18	

© Gunnar Gotshalks!

Conjunctive Normal Form – 4!

◊  If S = { c0 , c1 , c2 , … ck } are a set of clauses then the
representation of S is the formula!

◊  ci is a disjunction of variables and their negations!

◊  is a conjunction of these disjunctions!

◊  is in CNF (conjunctive normal form)!

 = (c0 c1 c2 … ck)!

 l0 l1 l2 … lk ~d0 ~d1 ~d2 … ~dm!

α α α α

α

α

∨∨∨∨∨∨∨∨ ∨

α

α

∧ ∧∧∧

RES-19	

© Gunnar Gotshalks!

Conjunctive Normal Form – 5!

◊  If S = { c0 , c1 , c2 , … ck } are a set of clauses then the
representation of S is the formula!

◊  ci is a disjunction of variables and their negations!

◊  is a conjunction of these disjunctions!

◊  is in CNF (conjunctive normal form)!

 = (c0 c1 c2 … ck)!

Every formula can be converted to CNF!

 l0 l1 l2 … lk ~d0 ~d1 ~d2 … ~dm!

α α α α

α

α

∨∨∨∨∨∨∨∨ ∨

α

α

∧ ∧∧∧

RES-20	

© Gunnar Gotshalks!

Contradiction in a set of clauses!

◊  The set { p ~ p } is a contradiction of clauses!∧

RES-21	

© Gunnar Gotshalks!

Contradiction in a set of clauses – 2!

◊  The set { p ~ p } is a contradiction of clauses!

◊  In clausal form this is!

!

!
p if true then p!
 p if p then false!

∧

←
←

RES-22	

© Gunnar Gotshalks!

Contradiction in a set of clauses – 3!

◊  The set { p ~ p } is a contradiction of clauses!

◊  In clausal form this is!

!

◊  We say that resolving upon p gives [] the empty clause,
which is false.!

∧

p if true then p!
 p if p then false!←
←

RES-23	

© Gunnar Gotshalks!

Propositional case – Resolution!

◊  What if there is a contradiction in the set of clauses!

RES-24	

© Gunnar Gotshalks!

Propositional case – Resolution – 2!

◊  What if there is a contradiction in the set of clauses!

◊  Example – only one clause!
   P!

RES-25	

© Gunnar Gotshalks!

Propositional case – Resolution – 3!

◊  What if there is a contradiction in the set of clauses!

◊  Example – only one clause!
   P!

◊  Add ~P to the set of clauses!
   P 

~P 
 ==>!

   P and ~P 
 ==> 
[] !-- null the empty clause is false!

RES-26	

© Gunnar Gotshalks!

Propositional case – Resolution – 4!

◊  What if there is a contradiction in the set of clauses!

◊  Example – only one clause!
   P!

◊  Add ~P to the set of clauses!
   P 

~P 
 ==>!

   P and ~P 
 ==> 
[] !-- null the empty clause is false!

◊  Think of P and ~P canceling each other out of existence!

RES-27	

© Gunnar Gotshalks!

◊  Given the clause!
   Q or ~R!

◊  and the clause!
   R or P!

◊  then resolving the two clauses is the following!
   (Q or ~R) and (R or P)  

 ==> 
P or Q !-- new clause that can be added to the set!

◊  Combining two clauses with a positive proposition and its
negation (called literals) leads to adding a new clause to
the set of clauses consisting of all the literals in both
parent clauses except for the literals resolved on!

Resolution rule!

Cancel each other!

RES-28	

© Gunnar Gotshalks!

◊  Given the clause!
   L1 or L2 or … or Lp or ~R!

◊  and the clause!
   R or K1 or K2 or … or Kq!

◊  then resolving the two clauses on R is the following!
(L1 or L2 or … or Lp or ~R) and (R or K1 or K2 or … or Kq)  

 ==>!
(L1 or L2 or … or Lp or K1 or K2 or … or Kq) !
!

 A new clause that can be added to the set!

Resolution rule – 2!

Cancel each other!

RES-29	

© Gunnar Gotshalks!

Resolution method!

◊  Combine clauses using resolution to find the empty clause!
»  Implies one or more of the clauses is false.!

◊  Given the clauses!
   1! P 

2 ~P or Q 
3 ~ Q or R  
4 ~R!

◊  Can resolve as follows!
   5 P and (~P or Q) ==> Q !resolve 1 and 2!
   6 Q and (~Q or R) ==> R !resolve 5 and 3!
   7 R and ~R ==> []! ! !resolve 6 and 4!

RES-30	

© Gunnar Gotshalks!

Proving a theorem!

1 Given a set of non contradictory clauses 
! – assume the set of clauses is true!

   P 
~P or Q 
~ Q or R!

RES-31	

© Gunnar Gotshalks!

Proving a theorem – 2!

1 Given a set of non contradictory clauses 
! – assume the set of clauses is true!

   P 
~P or Q 
~ Q or R !

2 Add the negation of the theorem, R , to be proven true!
   ~R!

RES-32	

© Gunnar Gotshalks!

Proving a theorem – 3!

1 Given a set of non contradictory clauses 
! – assume the set of clauses is true!

   P 
~P or Q 
~ Q or R !

2 Add the negation of the theorem, R , to be proven true!
   ~R!

–  If R is true, then the clause set now contains a
contradiction	

RES-33	

© Gunnar Gotshalks!

Proving a theorem – 4!

1 Given a set of non contradictory clauses 
! – assume the set of clauses is true!

   P 
~P or Q 
~ Q or ~R !

2 Add the negation of the theorem, ~R , to be proven true!
   R!

–  Clause set now contains a contradiction	

3 !Find [] – showing that a contradiction exists, 
(see the slide Resolution Method)!

!

RES-34	

© Gunnar Gotshalks!

Proving a theorem – 4!

1 Given a set of non contradictory clauses 
! – assume the set of clauses is true!

   P 
~P or Q 
~ Q or ~R !

2 Add the negation of the theorem, ~R , to be proven true!
   R!

–  Clause set now contains a contradiction	

3 !Find [] – showing that a contradiction exists, (see the slide
Resolution Method)!

4 Finding [] implies ~R is false, hence the theorem, R,
is true !

RES-35	

© Gunnar Gotshalks!

Resolution method problems!

◊  In general resolution leads to longer and longer
clauses!
» Length 2 & length 2 –> length 2 !no shorter!

» Length 3 & length 2 –> length 3 !no shorter!

»  In general 
length p & length q –> length p + q – 2 !longer!

RES-36	

© Gunnar Gotshalks!

Resolution method problems – 2!

◊  In general resolution leads to longer and longer clauses!
»  Length 2 & length 2 --> length 2 !
»  Length 3 & length 2 –> length 3!
»  In general length p & length q --> length p + q - 2!

◊  Non trivial to find the sequence of resolution rule
applications needed to find []!

RES-37	

© Gunnar Gotshalks!

Resolution method problems – 3!

◊  In general resolution leads to longer and longer clauses!
»  Length 2 & length 2 --> length 2 (see earlier slide) – no

shorter!
»  Length 3 & length 2 –> length 3 (longer)!
»  In general length p & length q --> length p + q - 2 (see earlier

slide) !

◊  Non trivial to find the sequence of resolution rule applications
needed to find []!

◊  But at least there is only one rule to consider, which
has helped automated theorem proving!

RES-38	

© Gunnar Gotshalks!

The Big Question!

How does all this relate to Prolog?!

RES-39	

© Gunnar Gotshalks!

If A then B – Propositional case!

◊  Example 1: In Prolog we write!
   A :- B.!

◊  Which in logic is!
   A if B ==> if B then A!
   ==> A or ~B!

◊  Example 2!
   A :- B , C , D.!
   A if B and C and D !
   ==> if B and C and D then A!
   ==> A or ~B or ~C or ~D!

Clausal form!
A B!

Clausal form!
A B, C, D!

←

←

RES-40	

© Gunnar Gotshalks!

If A then B – Propositional case – 2!

◊  Example 3!
   if B and C and D then P and Q and R!
   ==> ~B or ~C or ~D or (P and Q and R)!
   ==> (~B or ~C or ~D) or (P and Q and R)!
   ==> ~B or ~C or ~D or P 

 ~B or ~C or ~D or Q 
 ~B or ~C or ~D or R!

>  In Prolog!
   P :- B , C , D. 

Q :- B , C , D. 
R :- B , C , D.!

Clausal form!
P B, C, D!
Q B, C, D!
R B, C, D!

distribution!

←
←
←

RES-41	

© Gunnar Gotshalks!

If A then B – Propositional case – 4!

◊  Example 4!
   if B and C and D then P or Q or R!
   ==> ~B or ~C or ~D or P or Q or R!

!
!

   P :- B , C , D , ~Q , ~R  
Q :- B , C , D , ~P , ~R  
R :- B , C , D , ~P , ~Q	

Clausal form P, Q, R B, C, D!

No single statement in Prolog for such an if ... then ...
Choose one or more of the following depending upon
the expected queries and database!

←

RES-42	

© Gunnar Gotshalks!

If A then B – Propositional case – 5!

◊  Example 5!
   if the_moon_is_made_of_green_cheese !
   then pigs_can_fly!
   ==>!
   ~ the_moon_is_made_of_green_cheese or

pigs_can_fly 
!

>  In Prolog!
   pigs_can_fly :- 

 the_moon_is_made_of_green_cheese!

RES-43	

© Gunnar Gotshalks!

Prolog facts – propositional case!

◊  Prolog facts are just themselves.!
   a.  

b. 
the_moon_is_made_of_green_cheese. 
pigs_can_fly.!

◊  Comes from!
   if true then pigs_can_fly!
   ==> pigs_can_fly or ~true  

==> pigs_can_fly or false  
==> pigs_can_fly!

◊  In Prolog!
   pigs_can_fly :- true !:- true is implied, 

 so it is not written!

RES-44	

© Gunnar Gotshalks!

Query!

◊  A query "A and B and C", when negated is equivalent to!
   if A and B and C then false!

>  insert the negation into the database, expecting
to find a contradiction!

◊  Translates to!
   false or ~A or ~B or ~C!
   ==> ~A or ~B or ~C!

RES-45	

© Gunnar Gotshalks!

Is it true pigs_fly?!

◊  Add the negated query to the database!
   If pigs_fly then false!
   ==> ~pigs_fly or false ==> ~pigs_fly!

◊  If the database contains!
   pigs_fly!

◊  Then resolution obtains [], the contradiction, so the
negated query is false, so the query is true.!

RES-46	

© Gunnar Gotshalks!

Fact or Query?!

◊  Prolog distinguishes between facts and queries depending
upon the mode in which it is being used. In (re)consult
mode we are entering facts. Otherwise we are entering
queries.!

RES-47	

© Gunnar Gotshalks!

A longer example!

1   pigs_fly :- pigs_exist , animals_can_fly. 
!==> pigs_fly ~pigs_exist ~animals_can_fly

2   pigs_are_pink.!
!==> pigs_are_pink!

3   pigs_exist.!
!==> pigs_exist!

4   birds_can_fly.!
!==> birds_can_fly!

5   animals_can_fly.!
!==> animals_can_fly 
 
Hypothesize that pigs can fly!

6   :- pigs_fly.!
!==> ~pigs_fly!

∨∨

RES-48	

© Gunnar Gotshalks!

A longer example – 2!

Resolve 6 & 1 ==>!
7 !~pigs_exist ~animals_can_fly  

!
Resolve 7 & 3 ==>!
8 !~animals_can_fly  

!
Resolve 8 & 5 ==>!
9 [] 

!
We have the empty clause – a refutation!
As a consequence, the negated statement is false,!
the original statement, pigs_fly, is true.!

∨

RES-49	

© Gunnar Gotshalks!

Predicate Calculus!

◊  Step up to predicate calculus as resolution is not
interesting at the propositional level.!

!

RES-50	

© Gunnar Gotshalks!

Predicate Calculus – 2!

◊  Step up to predicate calculus as resolution is not interesting at
the propositional level.!

◊  We add!
»  the universal quantifier – for all x – x!
»  the existential quantifier – there exists an x – x!

∀
∃

RES-51	

© Gunnar Gotshalks!

Predicate Calculus – 3!

◊  Step up to predicate calculus as resolution is not interesting at
the propositional level.!

◊  We add!
»  the universal quantifier – for all x – x!
»  the existential quantifier – there exists an x – x!

◊  But in Prolog there are no quantifiers?!
» They are represented in a different way!

∃
∀

RES-52	

© Gunnar Gotshalks!

Forall x – x "x !

◊  The universal quantifier is used in expressions such as the
following!
   x • P (x)!

> For all x it is the case that P (x) is true!

   x • lovesBarney (x)!
> For all x it is the case that lovesBarney (x) is

true!

∀

∀

∀

RES-53	

© Gunnar Gotshalks!

Forall x – x – 2 "x !

◊  The universal quantifier is used in expressions such as the
following!
   x • P (x)!

>  For all x it is the case that P (x) is true!
   x • lovesBarney (x)!

>  For all x it is the case that lovesBarney (x) is true!
◊  The use of variables in Prolog takes the place of

universal quantification – a variable implies universal
quantification!
   P (X)!

> For all X it is the case that P (X) is true!
   lovesBarney (X)!

> For all x it is the case that lovesBarney (X) is
true!

∀

∀

∀

RES-54	

© Gunnar Gotshalks!

Exists x – x x!

◊  The existential quantifier is used in expressions such as
the following!
   x • P(x)!

> There exists an x such that P (x) is true!
   x • lovesBarney (x)!

> There exists an x such that lovesBarney (x) is true!

∃

∃

∃

RES-55	

© Gunnar Gotshalks!

Exists x – x – 2 x!

◊  The existential quantifier is used in expressions such as the
following!
   x • P(x)!

>  There exists an x such that P(x) is true!
   x • lovesBarney (x)!

>  There exists an x such that lovesBarney(x) is true!
◊  Constants in Prolog take the place of existential

quantification!
The constant is a value of x that satisfies existence	

   P (a) a is an instance such that P (a) is true!
   lovesBarney (elliot) elliot is an instance such that 

 lovesBarney (elliot) is true!

∃

∃

∃

RES-56	

© Gunnar Gotshalks!

Nested quantification!

◊  x y • sisterOf (x , y)!
> There exists an x such that there exists a y such

that x is the sister of y!
>  In Prolog introduce two constants!

   sisterOf (mary , eliza)!

◊  x y • sisterOf (x , y)!
> There exists an x such that forall y it is the case

that x is the sister of y!
   sisterOf (leila , Y)!

> One constant for all values of Y!

∃ ∃

∃ ∀

RES-57	

© Gunnar Gotshalks!

Nested quantification – 2!

◊  x y • sisterOf (x , y)!
> For all x there exists a y such that x is the sister

of y!
> The value of y depends upon which X is chosen,

so Y becomes a function of X!
   sisterOf (X , f (X))!

◊  x y • sisterOf (x , y)!
> For all x and for all y it is the case that x is the

sister of y!
   sisterOf (X , Y)!

> Two independent variables!

∃∀

∀∀

RES-58	

© Gunnar Gotshalks!

Nested quantification – 3!

◊  x y z • P (z)!
> For all x and for all y there exists a z such that

P(z) is true!
> The value of z depends upon both x and y, and

so becomes a function of X and Y!
   P (g (X , Y))!

◊  x y z w • P (x , y , z , w)!
> For all x there exists a y such that for all z there

exists a w such that P(x, y, z, w) is true!
> The value of y depends upon x, while the value

of w depends upon both x and z!
   P (X , h (X) , Z , g (X , Z))!

∃

∃ ∃

∀ ∀

∀ ∀

RES-59	

© Gunnar Gotshalks!

Skolemization!

◊  Removing quantifiers by introducing variables and
constants is called skolemization 
!
» Named after the Norwegian mathematician 

Thoralf Skolem !

RES-60	

© Gunnar Gotshalks!

Skolemization – 2!

◊  Removing quantifiers by introducing variables and constants is
called skolemization  
!

◊  Removal of gives us functions, and constants,
which are functions with no arguments.!
» Functions in Prolog are the compound terms!

∃

RES-61	

© Gunnar Gotshalks!

Skolemization – 3!

◊  Removing quantifiers by introducing variables and constants is
called skolemization !

◊  Removal of gives us functions and constants – functions with
no arguments.!
»  Functions in Prolog are the compound terms 
!

◊  Removal of gives us variables!

!

∃

∀

RES-62	

© Gunnar Gotshalks!

Skolemization – 4!

◊  Removing quantifiers by introducing variables and constants is
called skolemization !

◊  Removal of gives us functions and constants – functions with
no arguments.!
»  Functions in Prolog are called structures or compound terms!

◊  Removal of gives us variables 
!

◊  Each predicate is called a literal !

∀

∃

RES-63	

© Gunnar Gotshalks!

Herbrand universe!

◊  The transitive closure of the constants and functions is
called the Herbrand universe!

>  In general it is infinite!

RES-64	

© Gunnar Gotshalks!

Herbrand universe – 2!

◊  The transitive closure of the constants and functions is
called the Herbrand universe!

>  – In general it is infinite!
!

◊  A Prolog database defines predicates over the Herbrand
universe defined by the database!

RES-65	

© Gunnar Gotshalks!

Herbrand universe – 3!

◊  The transitive closure of the constants and functions is
called the Herbrand universe!

>  – In general it is infinite!
!

◊  A Prolog database defines predicates over the Herbrand
universe defined by the database!

> The compound terms in the database determine
the Herbrand universe!

RES-66	

© Gunnar Gotshalks!

Herbrand universe – Determination!

◊  It is the union of all constants and the recursive application
of functions to constants!

RES-67	

© Gunnar Gotshalks!

Herbrand universe – Determination – 2!

◊  It is the union of all constants and the recursive application
of functions to constants!
» Level 0 – Base level – is the set of constants!

RES-68	

© Gunnar Gotshalks!

Herbrand universe – Determination – 3!

◊  It is the union of all constants and the recursive application of
functions to constants!
»  Level 0 – Base level – is the set of constants 
!

» Level 1 constants are obtained by the substitution
of level 0 constants for all the variables in the
functions in all possible ways!

RES-69	

© Gunnar Gotshalks!

Herbrand universe – Determination – 4!

◊  It is the union of all constants and the recursive application of
functions to constants!
»  Level 0 – Base level – is the set of constants!
»  Level 1 constants are obtained by the substitution of level 0

constants for all the variables in the functions in all possible
ways 
!

» Level 2 constants are obtained by the substitution
of level 0 and level 1 constants for all the variables
in the functions in all possible ways!

RES-70	

© Gunnar Gotshalks!

Herbrand universe – Determination – 5!

◊  It is the union of all constants and the recursive application of
functions to constants!
»  Level 0 – Base level – is the set of constants!
»  Level 1 constants are obtained by the substitution of level 0

constants for all the variables in the functions in all possible
ways!

»  Level 2 constants are obtained by the substitution of level 0
and level 1 constants for all the variables in the functions in
all possible ways 
!

» Level n constants are obtained by the substitution
of all level 0 .. n-1 constants for all variables in the
functions in all possible ways!

RES-71	

© Gunnar Gotshalks!

Back to Resolution!

◊  Predicate calculus case is similar to the propositional
case in that resolution combines two clauses where
two literals cancel each other!

RES-72	

© Gunnar Gotshalks!

Back to Resolution – 2!

◊  Predicate calculus case is similar to the propositional case in
that resolution combines two clauses where two literals cancel
each other 
!

◊  With variables and constants we use pattern matching
to find the most general unifier (binding list for
variables) between two literals!

RES-73	

© Gunnar Gotshalks!

Back to Resolution – 3!

◊  Predicate calculus case is similar to the propositional case in
that resolution combines two clauses where two literals cancel
each other!

◊  With variables and constants we use pattern matching to find
the most general unifier (binding list for variables) between two
literals 
!

◊  The unifier is applied to all the literals in the two
clauses being resolved!

!

RES-74	

© Gunnar Gotshalks!

Back to Resolution – 4!

◊  Predicate calculus case is similar to the propositional case in
that resolution combines two clauses where two literals cancel
each other!

◊  With variables and constants we use pattern matching to find
the most general unifier (binding list for variables) between two
literals!

◊  The unifier is applied to all the literals in the two clauses being
resolved  
!

◊  All the literals, except for the two which were unified,
in both clauses are combined with “or”!

RES-75	

© Gunnar Gotshalks!

Back to Resolution – 5!

◊  Predicate calculus case is similar to the propositional case in
that resolution combines two clauses where two literals cancel
each other!

◊  With variables and constants we use pattern matching to find
the most general unifier (binding list for variables) between two
literals!

◊  The unifier is applied to all the literals in the two clauses being
resolved!

◊  All the literals, except for the two which were unified, in both
clauses are combined with “or” 
!

◊  The new clause is added to the set of clauses!

RES-76	

© Gunnar Gotshalks!

Back to Resolution – 6!

◊  Predicate calculus case is similar to the propositional case in
that resolution combines two clauses where two literals cancel
each other!

◊  With variables and constants we use pattern matching to find
the most general unifier (binding list for variables) between two
literals!

◊  The unifier is applied to all the literals in the two clauses being
resolved!

◊  All the literals, except for the two which were unified, in both
clauses are combined with “or”!

◊  The new clause is added to the set of clauses 
!

◊  When [] is found, the bindings in the path back to the
query give the answer to the query!

RES-77	

© Gunnar Gotshalks!

Example!

◊  Given the following clauses in the database!
   person (bob).!
   ~person (X) or mortal (X). 

 forall X • if person (X) then mortal (X)!

◊  Lets make a query asking if bob is a person!

◊  The query adds the following to the database!
   ~person (bob).!

◊  Resolution with the first clause is immediate with no
unification required!

◊  The empty clause is obtained  
So ~person(bob) is false, therefore person(bob) is true!

RES-78	

© Gunnar Gotshalks!

Example – 2!

◊  Given the following clauses in the database!
   person (bob).!
   ~person (X) or mortal (X). 

 forall X • if person (X) then mortal (X)!

◊  Lets make a query asking if bob is mortal!
◊  The query adds the following to the database!

   ~mortal (bob).!

◊  Resolution with the second clause gives with X_1 = bob
(renaming is required!)!
   ~person (bob).!

◊  Resolution with the first clause gives [] 
So ~mortal(bob) is false, therefore mortal(bob) is true!

RES-79	

© Gunnar Gotshalks!

Example – 3!

◊  Given the following clauses in the database!
   person (bob). 

~person (X) or mortal (X).!

◊  Lets make a query asking does a mortal exist 
The query adds the following to the database!
   ~mortal (X). ~ (x • mortal (x)) -- negated query!

◊  Resolution with the second clause gives with X_1 = X
(renaming is required!)!
   ~person (X_1).!

◊  Resolution with the first clause gives [] with X_1 = bob 
So ~mortal(X) is false, therefore mortal(X) is true with  
 bob = X_1 = X!

∀

RES-80	

© Gunnar Gotshalks!

Example – 4!

◊  Given the following clauses in the database!
   person (bob). 

~person (X) or mortal (X).!

◊  Lets make a query asking if alice is mortal!
   ~mortal (alice).!

◊  Resolution fails with the first clause but succeeds with the
second clause gives with X_1 = alice !
   ~person (alice).!

◊  Resolution with the first clause and second clause fails,
searching the database is exhausted without finding []!

◊  So ~mortal(alice) is true, therefore mortal(alice) is false!

RES-81	

© Gunnar Gotshalks!

Example – 4 cont'd!

◊  Actually all that the previous query determined is that
~mortal(alice) is consistent with the database and
resolution was unable to obtain a contradiction!

Prolog searches are based on a	

closed universe	

	

Truth is relative to the database	

RES-82	

© Gunnar Gotshalks!

Unification!

◊  In order to use the resolution method with predicate
calculus we need to be able to find the most general
unifier (mgu) between two literals.!

◊  p(a, b, c) and p(X, Y, Z)!
» mgu = { X / a , Y / b , Z / c }!

◊  f(g(a, b), a, g(a, b) and f(g(X, Y, X, g(X, y))!
» mgu = { X / a , Y / b , Z / a }!

◊  p(a, f(b, a), c) and p(X, f(X, Y), Z)!
» mgu does not exist!

◊  p(X, a, b) and p(Y, Y, b)!
» mgu = { X / Y , Y / a}!

RES-83	

© Gunnar Gotshalks!

Factoring!

◊  General resolution permits unifying several literals at once
by factoring!

> unifying two literals within the same clause, if
they are of the same "sign", both positive, 
P(...) or P(...), or both negative, ~P(...) or ~P(...)!

◊  Why factor?!
> Gives shorter clauses, making it easier to find

the empty clause!

RES-84	

© Gunnar Gotshalks!

Factoring – 2!

◊  For example given the following clause!
   loves (X , bob) or loves (mary , Y)!

◊  We can factor (obtain the common instances) by unifying
the two loves literals!
   loves (mary , bob) X = mary and Y = bob!

◊  The factored clause is implied by the un-factored clause
as it represents the subset of the cases that make the un-
factored clause true!

> Can be added to the database without
contradiction!

RES-85	

© Gunnar Gotshalks!

Creating a database!

◊  A large part of the work in creating a database is to
convert general predicate calculus statements into
conjunctive normal form. 
!

◊  Much of Chapter 10 of Clocksin & Mellish describes how
this can be done.!

RES-86	

© Gunnar Gotshalks!

Horn clauses!

◊  Clauses where the consequent is a single literal.!
> For example, X is the consequent in!

   If A and B and C then X!

RES-87	

© Gunnar Gotshalks!

Horn clauses – 2!

◊  Clauses where the consequent is a single literal.!
>  For example, X is the consequent in!

   If A and B and C then X!

◊  Horn clauses are important because, while resolution is
complete, it usually leads to getting longer and longer
clauses while finding contradiction means getting the
empty clause!

RES-88	

© Gunnar Gotshalks!

Horn clauses – 3!

◊  Clauses where the consequent is a single literal.!
>  For example, X is the consequent in!

   If A and B and C then X!

◊  Horn clauses are important because, while resolution is
complete, it usually leads to getting longer and longer clauses
while finding contradiction means getting the empty clause!
» Need to get shorter clauses or at least contain the

growth in clause length!

RES-89	

© Gunnar Gotshalks!

Horn clauses – 4!

◊  Clauses where the consequent is a single literal.!
>  For example, X is the consequent in!

   If A and B and C then X!

◊  Horn clauses are important because, while resolution is
complete, it usually leads to getting longer and longer clauses
while finding contradiction means getting the empty clause!
»  Need to get shorter clauses or at least contain the

growth in clause length!
» General resolution can lead to exponential growth!

RES-90	

© Gunnar Gotshalks!

Horn clauses – 5!

◊  Clauses where the consequent is a single literal.!
>  For example, X is the consequent in!

   If A and B and C then X!

◊  Horn clauses are important because, while resolution is
complete, it usually leads to getting longer and longer clauses
while finding contradiction means getting the empty clause!
»  Need to get shorter clauses or at least contain the

growth in clauses!
»  General resolution can lead to exponential growth in

both!
>  clause length!
>  size of the set of clauses!

RES-91	

© Gunnar Gotshalks!

Horn clauses – 6!

◊  Horn clauses have the property!
> Every clause has at most one positive literal

(un-negated) and zero or more negative literals!

RES-92	

© Gunnar Gotshalks!

Horn clauses – 7!

◊  Horn clauses have the property!
> Every clause has at most one positive literal

(un-negated) and zero or more negative literals!
   person (bob). 

mortal (X) ~person (X)  
binTree (t (D , L , R)) 
 ~treeData (D) ~binTree (L) ~binTree (R).!

RES-93	

© Gunnar Gotshalks!

Horn clauses – 8!

◊  Horn clauses have the property!
>  Every clause has at most one positive literal (un-

negated) and zero or more negative literals!
   person (bob). 

mortal (X) ~person (X)  
binTree (t (D , L , R)) 
 ~treeData (D) ~binTree (L) ~binTree (R).!

◊  Facts are clauses with one positive literal and no negated
literals, resolving with facts reduces the length of clauses!

RES-94	

© Gunnar Gotshalks!

Horn clauses – 9!

◊  Horn clauses have the property!
>  Every clause has at most one positive literal (un-

negated) and zero or more negative literals!
   person (bob). 

mortal (X) ~person (X)  
binTree (t (D , L , R)) 
 ~treeData (D) ~binTree (L) ~binTree (R).!

◊  Facts are clauses with one positive literal and no negated
literals, resolving with facts reduces the length of clauses!

◊  Horn clauses can represent anything we can compute!

RES-95	

© Gunnar Gotshalks!

Horn clauses – 10!

◊  Horn clauses have the property!
>  Every clause has at most one positive literal (un-

negated) and zero or more negative literals!
   person (bob). 

mortal (X) ~person (X)  
binTree (t (D , L , R)) 
 ~treeData (D) ~binTree (L) ~binTree (R).!

◊  Facts are clauses with one positive literal and no negated
literals, resolving with facts reduces the length of clauses!

◊  Horn clauses can represent anything we can compute!
» Any database and theorem that can be proven

within first order predicate calculus can be
translated into Horn clauses!

