Accumulators More on Arithmetic and Recursion

listlen (L,N)

♦ L is a list of length N if ...

listlen ([], 0).

listlen ([H|T], N) :- listlen (T, N1), N is N1 + 1.

> On searching for the goal, the list is reduced to empty

> On back substitution, once the goal is found, the counter is incremented from 0

Following is an example sequence of goals (left hand column) and back substitution (right hand column)

listlen([a, b, c] , N).N <== N1 + 1</td>listlen([b, c] , N1).N1 <== N2 + 1</td>listlen([c] , N2).N2 <== N3 + 1</td>listlen([] , N3).N3 <== 0</td>

Abstract the counter

- The following abstracts the counter part from listlen.
 addUp (0).
 addUp (C) :- addUp (C1), C is C1 + 1.
- Notice the recursive definition occurs on a counter one smaller than in the head.

Count Up

- An alternate method is to count on the way to the fixed point value in the query
- The accumulator accumulates the result on the way to the goal.
 adder (C) :- adder (0, C). Introduce accumulator
 adder (C, C) :- nl, write ('a').

> The goal is reached when the accumulator reaches the fixed point count value

```
adder ( Acc1 , C ) :- write ( 'b ' ) , Acc2 is Acc1 + 1
, adder ( Acc2 , C ).
```

> The predicates in black always succeed, side effect is to write to the terminal – can see order of rule execution

listLen(L,N) - 2

 We can define list length using an accumulator listln (L, N) :- lenacc (L, 0, N).
 Introduce the accumulator Invariant: length (L) + accumulator = N lenacc ([], A, A).
 lenacc ([HIT], A, N) :- A1 is A + 1 , lenacc (T, A1, N).

♦ Following is a sequence of goals

listln ([a, b, c], N).lenacc ([a, b, c], 0, N).lenacc ([b, c], 1, N1).lenacc ([c], 2, N2).lenacc ([1, 3, N3).

Sum a List of Numbers – no accumulator

SumList (List, Total) asserts List is a list of numbers and Total = + / List.

```
sumList ([], 0).
sumList ([First | Rest], Total) :-
sumList (Rest, Rest_total),
Total is First + Rest_total.
```

Sum a List of Numbers – with accumulator

- SumList (List, Total) asserts List is a list of numbers and Total = + / List.
 - » Use an accumulator
 - » Here sumList asserts Total = (+ / List) + Acc

```
sumList ( List , Total ) :- sumList ( List , 0 , Total ).
sumList ( [ ] , Acc , Acc ).
sumList( [ First | Rest ] , Acc , Total ) :-
NewAcc is Acc + First ,
sumList ( Rest , NewAcc , Total ).
```

A base case stops recursion

- ♦ A base case is one that stops recursion
 - » This is a more general notion than the smallest problem.
- ♦ Generate a sequence of integers from 0 to E, inclusive.
 - » Need to stop recursion when we have reached E.

numInRange (N , E) :- addUpToN (0 , N , E). addUpToE (Acc , Acc , -). Base case, no recursion addUpToE (Acc , N , E) :- Acc < E , Acc1 is Acc + 1 , Acc1 is Acc + 1 , addUpToE (Acc1 , N , E).

Accumulator – Using vs Not Using

- The definition styles reflect two alternate definitions for counting
 - » **Recursion** counts (accumulates) on back substitution.
 - > Goal becomes smaller problem
 - > Do not use accumulator
 - » Iteration counts up, accumulates on the way to the goal
 - > Accumulate from nothing up to the goal
 - > Goal "counter value" does not change
- ♦ Some problems require an accumulator
 - » Parts explosion problem
 - » Need intermediate results during accumulation
 - > Partial sums of a list of numbers

Factorial using recursion

- Following is a recursive definition of factorial Factorial (N) = N * Factorial (N – 1) factr (N, F) -- F is the factorial of N factr (0, 1). factr (N, F) :- J is N – 1, factr (J, F1) , F is N * F1.
- The problem (J, F1) is a smaller version of (N, F)
- Work toward the fixed point of a trivial problem
- Does not work for factr (N, 120) and factr (N, F).
 » Cannot do arithmetic J is N 1 because N is undefined.

Factorial using iteration – accumulators

An iterative definition of factorial

```
facti ( N , F ) :- facti ( 0 , 1 , N , F ).
facti ( N , F , N , F ).
facti ( I , Fi , N , F ) :- invariant ( I , Fi , J , Fj )
, facti ( J , Fj , N , F ).
```

invariant (I, Fi, J, Fj) :- J is I + 1, Fj is J * Fi.

- The last two arguments are the goal and they remain the same throughout.
- The first two arguments are the accumulator and they start from a fixed point and accumulate the result
- Works for queries facti (N,120) and facti (N,F) because values are always defined for the is operator.

Fibonacci – Ordinary Recursion

Following is a recursive definition of the Fibonacci series.
 For reference here are the first few terms of the series

```
Index - 0 1 2 3 4 5 6 7 8 9 10 11 12
Value - 1 1 2 3 5 8 13 21 34 55 89 144 233
Fibonacci (N) = Fibonacci (N - 1)
+ Fibonacci (N - 2).
fib (0, 1).
fib (1, 1).
fib (N, F) :- N1 is N - 1, N2 is N - 2
, fib (N1, F1), fib (N2, F2)
, F is F1 + F2.
```

Does not work for queries fib (N,8) and fib (N,F)
 > Values for is operator are undefined.

Fibonacci – Tail Recursion

♦ A tail recursive definition of the Fibonacci series

```
> Tail recursion is equivalent to iteration
fibt (0,1).
fibt (1,1).
fibt (N,F) :- fibt (2,1,1,N,F).
fibt (N,Last2,Last1,N,F) :- F is Last2 + Last1.
fibt (I,Last2,Last1,N,F) :- J is I + 1
                         , Fi is Last2 + Last1
                          , fibt (J,Last1,Fi,N,F).
```

Works for queries fibt (N, 120) and fibt (N, F)
 values are always defined for is operator.

Compare Fib versions

 Compare ordinary recursion with tail recursion for the Fibonacci predicates.

```
> N is the n'th number in the series
> T1 is the time for tail recursion
> T2 is the time for ordinary recursion
comparefib(N, T1, T2) :-
statistics(runtime, _, _),
fibt ( N , _),
statistics(runtime, [_, T1]),
fibr( N, _),
statistics(runtime, [_,T2]).
```

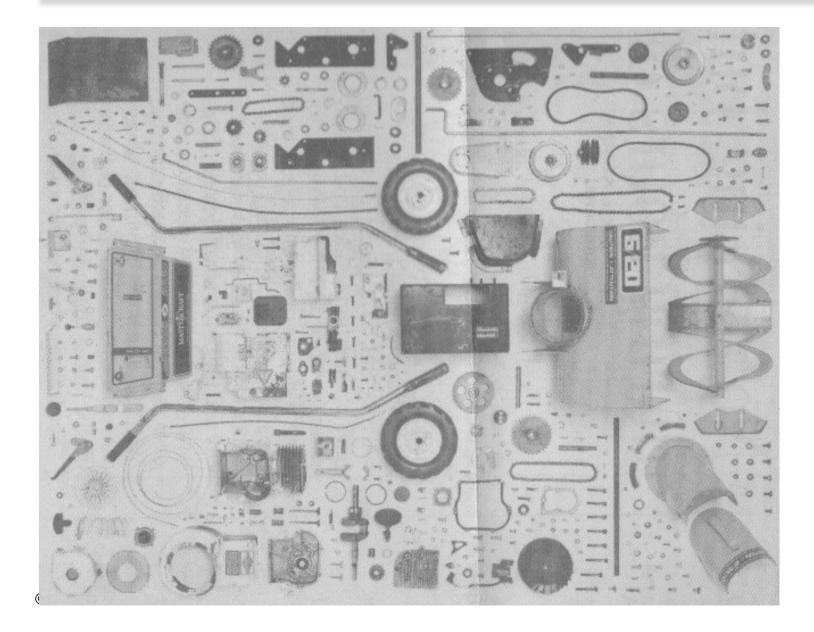
Parts Explosion – The Problem

Parts explosion is the problem of accumulating all the parts for a product from a definition of the components of each part

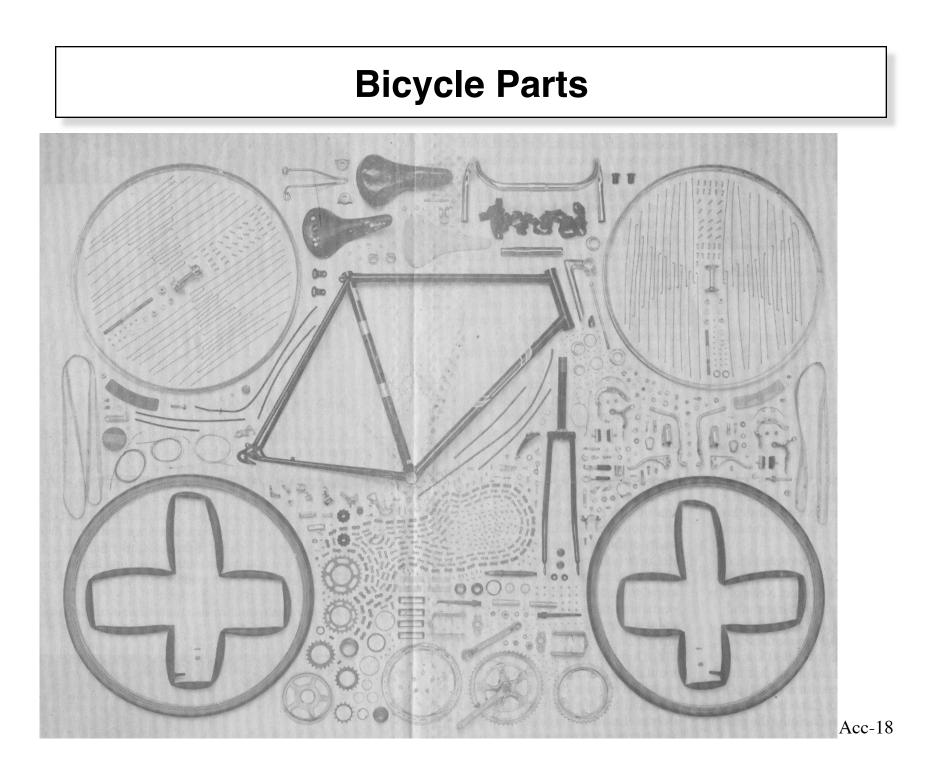
Snow Blower Parts View 1



Snow Blower Parts View 2



Acc-17



Parts Explosion – Example

Consider a bicycle we could have > the following basic components basicPart(spokes). basicPart(rim). basicPart(tire). basicPart(inner_tube). basicPart(handle_bar). basicPart(front_ fork). basicPart(rear_fork).

> the following definitions for sub assemblies assembly(bike, [wheel, wheel, frame]). assembly(wheel, [spokes, rim, wheel_cushion]). assembly(wheel_cushion, [inner_tube, tire]). assembly(frame, [handle_bar, front_fork, rear_fork]).

 \Diamond

Parts Explosion – The Problem 2

♦ We are interest in obtaining a parts list for a bicycle.

[rear_ fork , front_ fork , handle_bar , tire
, inner_tube , rim , spokes , tire , inner_tube , rim
, spokes]

> We have two wheels so there are two tires, inner_tubes, rims and spokes.

 Using accumulators we can avoid wasteful re-computation as in the case for the ordinary recursion definition of the Fibonacci series

Parts Explosion – Accumulator 1

- ♦ partsof (X,P) P is the list of parts for item X
- opartsacc (X, A, P) parts_of (X) || A = P.
 partsof (X, P) :- partsacc (X, [], P).

Il is catenate (math append)

> Basic part – parts list contains the part partsacc (X, A, [X|A]) :- basicPart (X).

> Not a basic part – find the components of the part partsacc (X, A, P) :- assembly (X, Subparts),

> parsacclist - parts_of (Subparts) II A = P
partsacclist (Subparts , A , P).

Parts Explosion – Accumulator 2

- oparsacclist (ListOfParts, AccParts, P)
 - parts_of (ListOfParts) || AccParts = P

> No parts \Rightarrow no change in accumulator partsacclist ([], A, A).

> And catenate with the parts obtained from the rest of the ListOfParts

, partsacclist (Tail, HeadParts, Total).

Reverse a list with an accumulator

Of Define the predicate reverse (List, ReversedList) that asserts ReversedList is the List in reverse order.

```
reverse (List, Reversed):-
reverse (List, [], Reversed).
```

```
reverse ([], Reversed, Reversed).
```

```
reverse ([Head | Tail]) || SoFar = Reversed
reverse ([Head | Tail], SoFar, Reversed):-
reverse (Tail, [Head | SoFar], Reversed).
```

Reverse a list without accumulator

Of Define the predicate reverse (List, ReversedList) that asserts ReversedList is the List in reverse order.

```
reverse ([],[]).
reverse ([Head | Tail], ReversedList):-
reverse (Tail, ReversedTail),
append (ReversedTail, [Head], ReversedList).
```

 Note the extra list traversal required by append compared to the accumulator version.

Difference Lists and Holes

- ♦ The accumulator in the parts explosion program is a stack
 - » Items are stored in the reverse order in which they are found
- One of the store accumulated items in the same order in which they are formed?

» Use a queue

Oifference lists with holes are equivalent to a queue

Examples for Holes

Onsider the following list

[a,b,c,d | X]

- > X is a variable indicating the tail of the list. It is like a hole that can be filled in once a value for X is obtained
- ♦ For example

Res = [a,b,c,d | X], X = [e,f]. > Yields Res = [a,b,c,d,e,f]

Examples for Holes – 2

Or could have the following with the hole going down the list

Res = [a, b, c, d | X]

> more goal searching gives X = [e,fIY]

> more goal searching gives Y = [h,i,j]

> Back substitution Yields

Res = [a , b , c , d , e , f , h , i , j]

Efficiency of List Concatenation

Onsider the definition of append

> The concatenation of lists is inefficient when the first list is long

```
append ([], L, L).
```

```
append ([X | L1], L2, [X | L3])
:- append (L1, L2, L3).
```

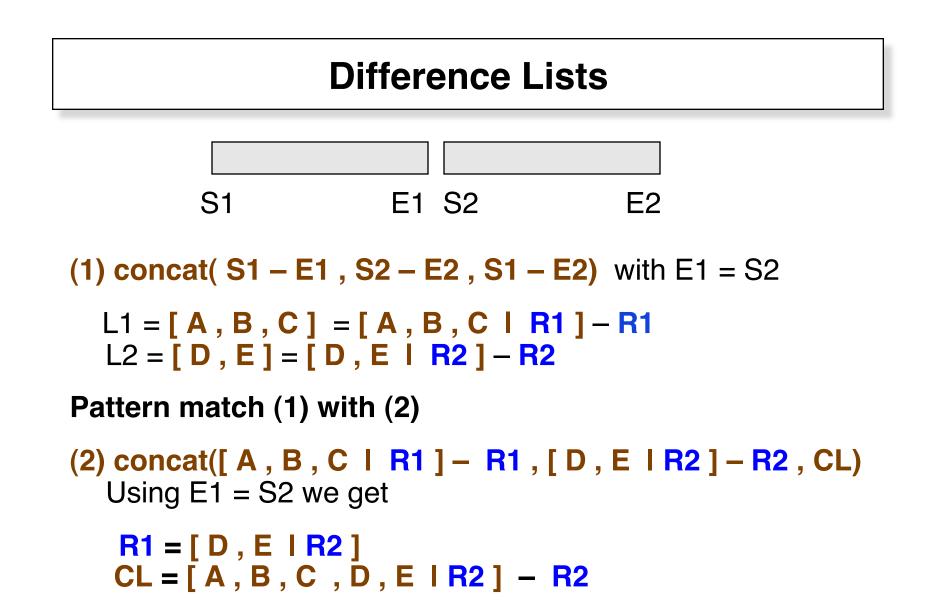
> If we could skip the entire first part of the list in a single step, then concatenation of lists would be efficient

Difference Lists Representation

♦ The list L

» L = [a, b, c]

- Output Can be represented by two lists
 - » L1 = [a, b, c, d, e] L1 = [a, b, c]
 - » L2 = [d, e]
 » L = L1 L2
 L = L1 L2
- In fact L2 can be anything, so we can have the following
 » L = [a, b, c, d, e | T] [d, e | T]
 » L = [a, b, c | T] T
- ♦ The empty list [] = L L, for any L



Parts Explosion – Difference List 1

- \diamond partsofd (X, P) P is the list of parts for item X
- opartsdiff (X, Hole, P) parts_of (X) || Hole = P
 - > Hole and P are reversed compared to Clocksin & Mellish (v5) to better compare with accumulator version.

partsofd(X,P) :- partsdiff(X,[],P).

> Base case we have a basic part, then the parts list contains the part partsdiff (X, Hole, [X | Hole]) :- basicPart (X).

Parts Explosion – Difference List 2

> Not a base part, so we find the components of the part

partsdiff(X, Hole, P) :- assembly(X, Subparts)

> parsdifflistd - parts_of (Subparts) II Hole = P

, partsdifflist (Subparts, Hole, P).

Parts Explosion – Difference Lists 3

- operation of the parts of th
 - parts_of (ListOfParts) || Hole = P

Compare Accumulator with Hole

partsof (X, P) :- partsacc (X, [], P). Accumulator partsofd (X, P) :- partsdiff (X, [], P). Difference/Hole

partsacc (X, A , [X|A]) :- basicPart(X).
partsdiff(X,Hole,[X|Hole]) :- basicPart(X).

partsacc (X, A, P) :- assembly (X, Subparts) , partsacclist (Subparts, A, P).

partsdiff (X, Hole, P) :- assembly (X, Subparts)
, partsdifflist (Subparts, Hole, P).

Compare Accumulator with Hole – 2

partsacclist ([], A, A). partsdifflist ([], Hole, Hole).

```
partsacclist ([Head | Tail], A, Total)
:- partsacc (Head, A, HeadParts)
, partsacclist (Tail, HeadParts, Total).
```

```
partsdifflist ([Head | Tail], Hole, Total)
:- partsdiff (Head, Hole1, Total)
, partsdifflist (Tail, Hole, Hole1).
```