Constraint Logic Programming

© Gunnar Gotshalks

What is Constraint Logic Programming?

- Is a combination of
 - » Logic programming
 - » Optimization
 - » Artificial Intelligence

Components

- ♦ Have a set of variables
 - » Each variable ranges over a domain of values
 - > X in 1 .. 20
 - X has values between 1 and 20 inclusive finite domain

> [X, Y] ins 1..20

- X and Y each have values between 1 and 20 inclusive
- > **X**
 - If the library loaded is the CLP on real numbers then
 X is any real number infinite domain

Components 2

A Have constraints on subsets of the variables

» Y = X + 1

$$Y = X + 1, 2 * Y = < 8 - X$$

» Y = X + 1 , 2 * Y =< 8 − X , Z = 2 * X + 3 *Y

> Here we assume the base type of X, Y and Z are real numbers

 Note that constraints can be on single variables to restrict the range, effectively defining the domain of values

» X > 0 , X < 21

Components 3

- ♦ Have built-in operators
 - » maximize (Z)
 - » minimize (Z + 10 * Y)
 - » inf (Z , I)
 - » sup (Z Y , S)

Putting it together

- Assuming variables are in the real number domain
 - » Try different variations of the following in CLP(R)
- **{** X >= 2 ,
- Y >= 2 ,
- $\mathsf{Y}=\mathsf{X}+\mathsf{1} \; ,$
- 2 * Y =< 8 − X,
- Z = 2 * X + 3 * Y,
- maximize (Z+Y),
- inf (Z,I),
- sup (Z–Y , S).

- -- Specify domain of X
- -- Specify domain of Y
- -- Constraint 1 on X & Y
- -- Constraint 2 on X & Y
- -- Constrain Z wrt X and Y
- -- Another constraint
 - -- I is the the infimum (minimum) of Z
 - -- S is the supremum (maximum) of Z-Y

Purpose

- Satisfy the constraints
 - » Find an assignment of values to the variables such that all the constraints are simultaneously true
 - » In optimization problems find the best assignment of values
 - > Maximize, minimize, etc.

What is in SWIPL

- SWI-prolog has various libraries that can be consulted
 - » [library(clpr)].
 - > An implementation of CLP(R) with variables being real numbers with real arithmetic
 - » [library(clpq)].
 - > An implementation of CLP(Q) with variables being rational numbers (ratios of integers)
 - » [library(clpfd)].
 - > An implementation of CLP(FD) with variables being in finite domains
 - » [library(clpqr)].
 - > Combination of rationals and reals

CLP(Q) CLP(R) comparison

- ♦ Try the following
 - » :- library(clpq)
 - $> \{ X = 2 * Y , Y = 1 X \}.$
- Output Compare with what is done in CLP(R)
 - >> :- library(clpr)
 - $> \{ X = 2 * Y , Y = 1 X \}.$

CLP(R) Exercise

Try the expression in slide CLP-6, adding one expression after another until the full slide is done

Fahrenheit <--> Celsius

 Consider a predicate to convert between Fahrenheit and Celsius

» convert (Fahrenheit , Celsius) :-Celsius is (Fahrenheit – 32) * 5 / 9.

> Can only go in one direction because "is" requires Fahrenheit to be instantiated

Vsing CLP we can go both ways

» convert (Fahrenheit , Celsius) :{ Celsius = (Fahrenheit – 32) * 5 / 9 }.

» convert (Fahrenheit , Celsius) :{ Fahrenheit = Celsius* 5 / 9 + 32 }.

PERT & CPM

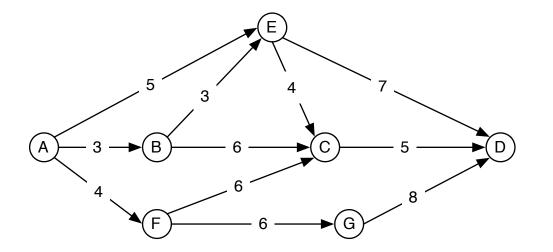
PERT == Program Evaluation and Review Technique

CPM == Critical Path Method

 Both are methods used in managing the complex scheduling of tasks that occur, for example, in building projects

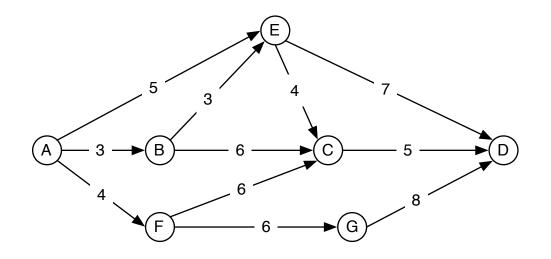
CPM & PERT Graph

- ♦ Is a graph where
 - » Nodes are end points for tasks
 - > Tasks begin or end at nodes
 - » Arcs are duration time for tasks
 - > Have a duration time associated with them



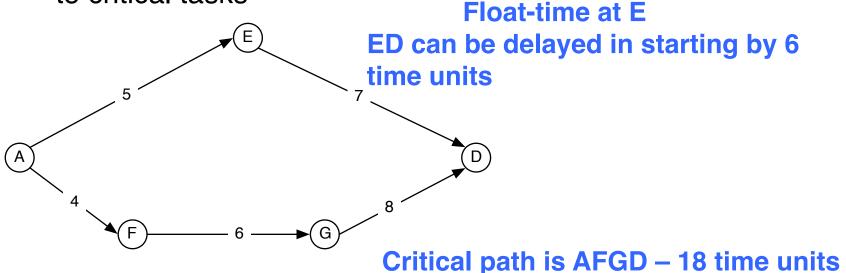
CPM & PERT Graph – 2

- A task cannot start until all its precedence tasks are completed
 - » E.G. Task CD must wait until tasks EC, BC and FC are completed before it can start



PERT & CPM Objectives

- Find the critical path of tasks such that if any task is delayed the entire project is delayed, hence resources are allocated to minimize delay
- Another objective is to find where there is float-time in the schedule so resources can be moved from non-critical tasks to critical tasks



Scheduling Example – Figure 7.1

♦ The textbook gives the following scheduling algorithm

Note, you have to construct a final node F, with zero duration, and appropriate arcs to it.

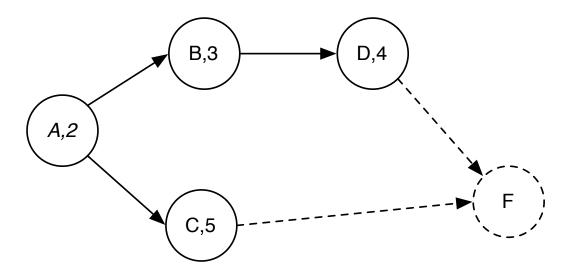
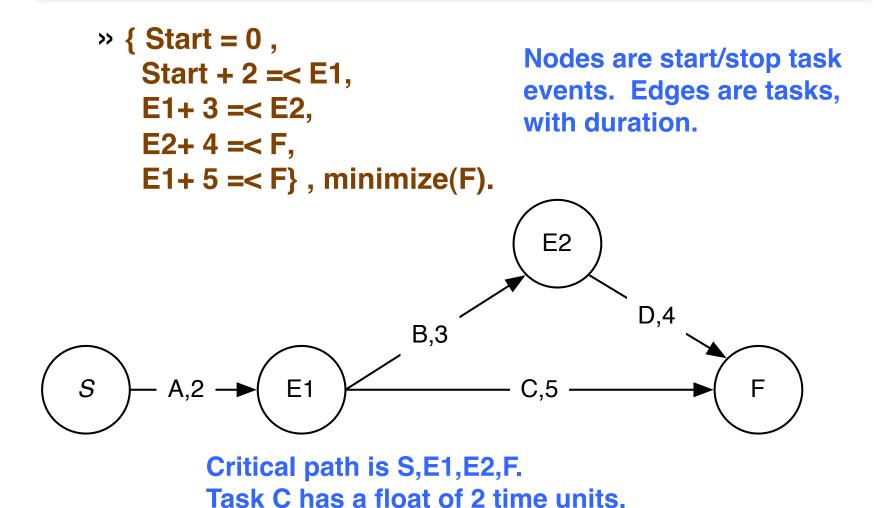
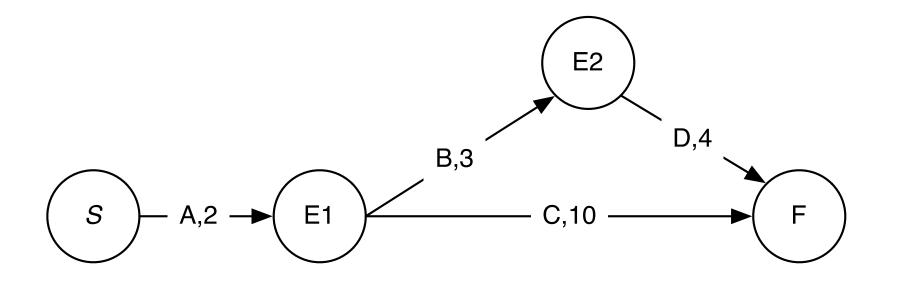


Figure 7.1as a CPM / PERT graph



Showing D with delayed start time



Fibonacci – Ordinary Recursion

Following is a recursive definition of the Fibonacci series.
 For reference here are the first few terms of the series

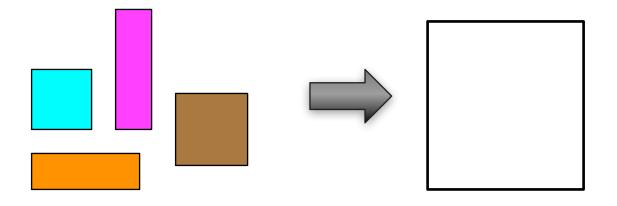
```
Index - 0 1 2 3 4 5 6 7 8 9 10 11 12
Value - 1 1 2 3 5 8 13 21 34 55 89 144 233
Fibonacci (N) = Fibonacci (N - 1)
+ Fibonacci (N - 2).
fib (0, 1).
fib (1, 1).
fib (N, F) :- N1 is N - 1, N2 is N - 2
, fib (N1, F1), fib (N2, F2)
, F is F1 + F2.
```

Does not work for queries fib (N, 8) and fib (N, F)
 » Values for is operator are undefined.

Fibonacci with CLP

```
fib_clp(N, F) :-
     \{ N = 0, F = 1 \}
                               With accumulators
                               we will see another
,
     { N = 1, F = 1 }
                               solution
,
     \{ N >= 2, \}
      F = F1 + F2,
      N1 = N - 1,
      N2 = N - 2,
      F1 >= N1, Add for computational
      F2 >= N2 } needs, not logical needs.
     fib_clp (N1, F1), fib_clp (N2, F2).
```

Packing blocks into boxes

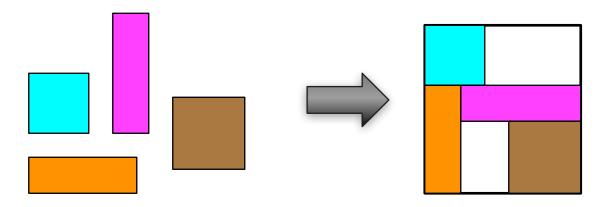


◊ Constraints

- » All objects are rectangular in two dimensional space
- » Sides of rectangles are parallel to the axes
- » Rectangles have a height and width

A Pictorial Solution

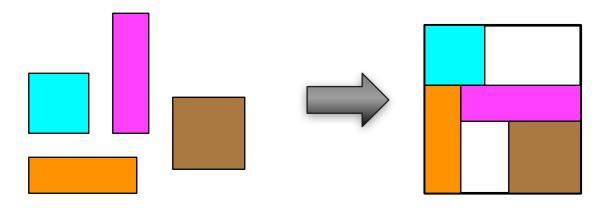
♦ Blocks can be rotated by 90 degrees within the box.



» What needs to be done to get a solution in Prolog?

A Pictorial Solution – 2

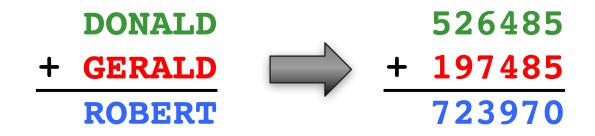
♦ Blocks can be rotated by 90 degrees within the box.



- » What needs to be done to get a solution in Prolog?
- » Is all of the work unique to Prolog?

DONALD + GERALD = ROBERT

Crypt arithmetic puzzles are like the following, where digits
 0..9 replace the letters



DONALD + GERALD = ROBERT – 2

- solve([D,O,N,A,L,D] , [G,E,R,A,L,D] , [R,O,B,E,R,T]) :-
 - Vars = [D,O,N,A,L,G,E,R,B,T], % All variables in the puzzle
 - Vars ins 0..9,% They are all decimal digits
 - all_different(Vars), % They are all different
 - 100000*D + 10000*O + 1000*N + 100*A + 10*L + D +
 - 100000*G + 10000*E + 1000*R + 100*A + 10*L + D #=
 - 100000*R + 10000*O + 1000*B + 100*E + 10*R + T,
- % labeling([], Vars).
 - label(Vars).% Use default labeling

You can time predicate execution

```
» stats ( Time ) :-
    statistics ( runtime , _ ) ,
    solve ( _ , _ , _ ) ,
    statistics ( runtime , [ _ , Time ] ).
```

SEND + MORE = MONEY

```
solve( [S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y] ) :-
```

```
Vars = [S,E,N,D,M,O,R,Y],
```

```
Vars ins 0..9,
```

```
all_different(Vars),
```

```
% All variables in the puzzle
```

```
% They are all decimal digits
```

```
% They are all different
```

```
1000*S + 100*E + 10*N + D +
```

```
1000*M + 100*O + 10*R + E #=
```

```
10000*M + 1000*O + 100*N + 10*E + Y,
```

M #\= 0 , S #\= 0 ,

/* Systematically try out values for the finite domain variables in the set Vars until all of them are ground. */

```
labeling( [], Vars).
```

Replacement for page 194

- maximize (indomain (X), Y) does not exist in swipl
 Replace with the following
 - » X in 1 .. 20 , Y #= X * (20 X) , once (labeling ([max (Y)] , [X , Y])).
 - » [X ,Y] ins 1 .. 20 , 2 * X + Y #=< 40 , once (labeling ([max (X * Y)] , [X , Y])).

Replacement for page 194 – 2

- Output Compare the following with schedule1 in CLP(R)
 - » Replace with the following

```
» schedule1 ( A , B , C , D , F ) :-
StartTimes = [ A , B , C , D , F ] ,
StartTimes ins 0 .. 20 ,
A + 2 #=< B ,
A + 2 #=< C ,
B + 3 #=< D ,
C + 5 #=< F ,
D + 4 #=< F,
once ( labeling ( [ min ( F ) ] , [ A , B , C , D , F ] ) ).
```