
CLP-1	

© Gunnar Gotshalks!

Constraint Logic Programming!

CLP-2	

© Gunnar Gotshalks!

What is Constraint Logic Programming?!

◊  Is a combination of!
» Logic programming!
» Optimization!
» Artificial Intelligence!

CLP-3	

© Gunnar Gotshalks!

Components!

◊  Have a set of variables!
» Each variable ranges over a domain of values!

> X in 1 .. 20!
–  X has values between 1 and 20 inclusive – finite domain	

>  [X , Y] ins 1 .. 20!
–  X and Y each have values between 1 and 20 inclusive	

> X !
–  If the library loaded is the CLP on real numbers then

X is any real number – infinite domain	

CLP-4	

© Gunnar Gotshalks!

Components 2!

◊  Have constraints on subsets of the variables!
» Y = X + 1!
» Y = X + 1 , 2 * Y =< 8 – X!
» Y = X + 1 , 2 * Y =< 8 – X , Z = 2 * X + 3 *Y!

> Here we assume the base type of X, Y and Z are
real numbers!

◊  Note that constraints can be on single variables to restrict
the range, effectively defining the domain of values!
» X > 0 , X < 21!

CLP-5	

© Gunnar Gotshalks!

Components 3!

◊  Have built-in operators!
» maximize (Z)!
» minimize (Z + 10 * Y)!
»  inf (Z , I)!
» sup (Z – Y , S) !

CLP-6	

© Gunnar Gotshalks!

Putting it together!

◊  Assuming variables are in the real number domain!
» Try different variations of the following in CLP(R)!

{ X >= 2 , ! !-- Specify domain of X  

 Y >= 2 , ! !-- Specify domain of Y  

 Y = X + 1 , ! !-- Constraint 1 on X & Y  
 2 * Y =< 8 – X, !-- Constraint 2 on X & Y  

 Z = 2 * X + 3 * Y } , -- Constrain Z wrt X and Y  
 maximize (Z+Y) , !-- Another constraint  

 inf (Z , I) , ! !-- I is the the infimum (minimum) of Z  

 sup (Z–Y , S).! !-- S is the supremum (maximum) of Z-Y!

CLP-7	

© Gunnar Gotshalks!

Purpose!

◊  Satisfy the constraints!
» Find an assignment of values to the variables such

that all the constraints are simultaneously true  
!

»  In optimization problems find the best assignment
of values  
!

> Maximize, minimize, etc.!

CLP-8	

© Gunnar Gotshalks!

What is in SWIPL!

◊  SWI-prolog has various libraries that can be consulted!
»  [library(clpr)].!

> An implementation of CLP(R) with variables
being real numbers with real arithmetic!

»  [library(clpq)].!
> An implementation of CLP(Q) with variables

being rational numbers (ratios of integers)!
»  [library(clpfd)].!

> An implementation of CLP(FD) with variables
being in finite domains!

»  [library(clpqr)].!
> Combination of rationals and reals!

CLP-9	

© Gunnar Gotshalks!

CLP(Q) CLP(R) comparison!

◊  Try the following!
»  :- library(clpq)!
»  { X = 2 * Y , Y = 1 – X}. 
!

◊  Compare with what is done in CLP(R)!
»  :- library(clpr)!
»  { X = 2 * Y , Y = 1 – X}.!

CLP-10	

© Gunnar Gotshalks!

CLP(R) Exercise!

◊  Try the expression in slide CLP-6, adding one expression
after another until the full slide is done!

CLP-11	

© Gunnar Gotshalks!

Fahrenheit <--> Celsius!

◊  Consider a predicate to convert between Fahrenheit and
Celsius!
» convert (Fahrenheit , Celsius) :- 
! !Celsius is (Fahrenheit – 32) * 5 / 9.!
> Can only go in one direction because “is”

requires Fahrenheit to be instantiated!

◊  Using CLP we can go both ways!
» convert (Fahrenheit , Celsius) :- 
! !{ Celsius = (Fahrenheit – 32) * 5 / 9 }.!

» convert (Fahrenheit , Celsius) :- 
! !{ Fahrenheit = Celsius* 5 / 9 + 32 }.!

CLP-12	

© Gunnar Gotshalks!

PERT & CPM!

PERT == Program Evaluation and Review Technique  
!
CPM == Critical Path Method 
!

◊  Both are methods used in managing the complex
scheduling of tasks that occur, for example, in building
projects!

CLP-13	

© Gunnar Gotshalks!

CPM & PERT Graph!

◊  Is a graph where!
» Nodes are end points for tasks!

> Tasks begin or end at nodes!
» Arcs are duration time for tasks!

> Have a duration time associated with them!

A B C D

E

F G

5

3

3 4 7

6 5

4 6

6
8

CLP-14	

© Gunnar Gotshalks!

CPM & PERT Graph – 2!

◊  A task cannot start until all its precedence tasks are
completed!
» E.G. Task CD must wait until tasks EC, BC and FC

are completed before it can start!

A B C D

E

F G

5

3

3 4 7

6 5

4 6

6
8

CLP-15	

© Gunnar Gotshalks!

PERT & CPM Objectives!

◊  Find the critical path of tasks such that if any task is delayed
the entire project is delayed, hence resources are allocated
to minimize delay!

◊  Another objective is to find where there is float-time in the
schedule so resources can be moved from non-critical tasks
to critical tasks!

A D

E

F G

5 7

4

6
8

Critical path is AFGD – 18 time units!

!Float-time at E!
ED can be delayed in starting by 6!
time units!

CLP-16	

© Gunnar Gotshalks!

Scheduling Example – Figure 7.1!

◊  The textbook gives the following scheduling algorithm!
»  {Ta = 0 , 

Ta + 2 =< Tb , 
Ta + 2 =< Tc , 
Tb + 3 =< Td , 
Tc + 5 =< Tf , 
Td + 4 =< Tf } , minimize(Tf).!

A,2

D,4B,3

C,5
F

Note, you have to!
construct a final!
node F, with zero duration,!
and appropriate arcs to it.!

CLP-17	

© Gunnar Gotshalks!

Figure 7.1as a CPM / PERT graph!

»  { Start = 0 , 
 Start + 2 =< E1, 
 E1+ 3 =< E2, 
 E2+ 4 =< F, 
 E1+ 5 =< F} , minimize(F).!

S

E2

E1 FC,5

B,3
D,4

A,2

Nodes are start/stop task  
events. Edges are tasks, 
with duration.!

Critical path is S,E1,E2,F. 
Task C has a float of 2 time units.!

CLP-18	

© Gunnar Gotshalks!

Showing D with delayed start time!

»  { Start = 0 , 
 Start + 2 =< E1, 
 E1+ 3 =< E2, 
 E2+ 4 =< F, 
 E1+ 5 =< F} , minimize(F), maximize(E2).!

S

E2

E1 FC,10

B,3
D,4

A,2

CLP-19	

© Gunnar Gotshalks!

Fibonacci – Ordinary Recursion!

◊  Following is a recursive definition of the Fibonacci series.
For reference here are the first few terms of the series!
   Index – 0 1 2 3 4 5 6 7 8 9 10 11 12  

Value – 1 1 2 3 5 8 13 21 34 55 89 144 233!
   Fibonacci (N) = Fibonacci (N – 1) 

 + Fibonacci (N – 2).!

   fib (0 , 1). 
fib (1 , 1). 
fib (N , F) :- N1 is N – 1 , N2 is N – 2  
 , fib (N1 , F1) , fib (N2 , F2) 
 , F is F1 + F2.!

◊  Does not work for queries fib (N , 8) and fib (N , F)!
» Values for is operator are undefined.!

CLP-20	

© Gunnar Gotshalks!

Fibonacci with CLP!

   fib_clp(N , F) :- 
!{ N = 0 , F = 1 }  

; 
!{ N = 1 , F = 1 }  

; 
!{ N >= 2 , 
! F = F1 + F2 , 
! N1 = N – 1 , 
! N2 = N – 2 , 

 
! F1 >= N1 , 
! F2 >= N2 }  

 
!fib_clp (N1, F1) , fib_clp (N2 , F2).!

Add for computational!
needs, not logical needs.!

With accumulators!
we will see another!
solution!

CLP-21	

© Gunnar Gotshalks!

Packing blocks into boxes!

!

◊  Constraints!
» All objects are rectangular in two dimensional

space!
» Sides of rectangles are parallel to the axes!
» Rectangles have a height and width!

CLP-22	

© Gunnar Gotshalks!

A Pictorial Solution!

◊  Blocks can be rotated by 90 degrees within the box.!

!
» What needs to be done to get a solution in Prolog?!

!

CLP-23	

© Gunnar Gotshalks!

A Pictorial Solution – 2!

◊  Blocks can be rotated by 90 degrees within the box.!

!
» What needs to be done to get a solution in Prolog?!

»  Is all of the work unique to Prolog?!

!

!

CLP-24	

© Gunnar Gotshalks!

DONALD + GERALD = ROBERT!

◊  Crypt arithmetic puzzles are like the following, where digits
0..9 replace the letters!

 DONALD!
+ GERALD!
 ROBERT!

 526485!
+ 197485!
 723970!

CLP-25	

© Gunnar Gotshalks!

DONALD + GERALD = ROBERT – 2!

solve([D,O,N,A,L,D] , [G,E,R,A,L,D] , [R,O,B,E,R,T]) :-!
 Vars = [D,O,N,A,L,G,E,R,B,T], % All variables in the puzzle!
 Vars ins 0..9, % They are all decimal digits!
 all_different(Vars), % They are all different!
 100000*D + 10000*O + 1000*N + 100*A + 10*L + D +!
 100000*G + 10000*E + 1000*R + 100*A + 10*L + D #=!
 100000*R + 10000*O + 1000*B + 100*E + 10*R + T,!
% labeling([], Vars).!
 label(Vars). ! ! % Use default labeling!
!

CLP-26	

© Gunnar Gotshalks!

You can time predicate execution!

» stats (Time) :- 
! !statistics (runtime , _) , 
! !solve (_ , _ , _) , 
! !statistics (runtime , [_ , Time]).!

CLP-27	

© Gunnar Gotshalks!

SEND + MORE = MONEY!

solve([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-!
 Vars = [S,E,N,D,M,O,R,Y], % All variables in the puzzle!
 Vars ins 0..9, % They are all decimal digits!
 all_different(Vars), % They are all different!
 1000*S + 100*E + 10*N + D +!
 1000*M + 100*O + 10*R + E #=!
 10000*M + 1000*O + 100*N + 10*E + Y ,!
 M #\= 0 , S #\= 0 ,!
/* Systematically try out values for the finite domain variables!
 in the set Vars until all of them are ground. */!
 labeling([], Vars).!

CLP-28	

© Gunnar Gotshalks!

Replacement for page 194!

◊  maximize (indomain (X) , Y) does not exist in swipl!
» Replace with the following!

» X in 1 .. 20 , Y #= X * (20 – X) , 
once (labeling ([max (Y)] , [X , Y])).!

»  [X ,Y] ins 1 .. 20 , 2 * X + Y #=< 40 , 
once (labeling ([max (X * Y)] , [X , Y])).!

CLP-29	

© Gunnar Gotshalks!

Replacement for page 194 – 2!

◊  Compare the following with schedule1 in CLP(R)!
» Replace with the following!

» schedule1 (A , B , C , D , F) :-  
 StartTimes = [A , B , C , D , F] , 
 StartTimes ins 0 .. 20 , 
 A + 2 #=< B , 
 A + 2 #=< C , 
 B + 3 #=< D , 
 C + 5 #=< F , 
 D + 4 #=< F, 
 once (labeling ([min (F)] , [A , B , C , D , F])).!

