
DO-1	

© Gunnar Gotshalks!

Defining!
Binary & Unary!

Operators!

DO-2	

© Gunnar Gotshalks!

English-French Dictionary !

◊  Can use compound terms to represent a dictionary!
>  list is a structure that contains an entry followed

by the rest of the list!
> For example!
   list (entry (book , livre) ,!
   list (entry (man , homme) ,!
   list (entry (apple , pomme) ,!
   empty)))!

◊  Illustrates how compound terms can be used!

DO-3	

© Gunnar Gotshalks!

English-French Dictionary – 2!

◊  Define a custom member function for the list structure!

   member (X , list (X , _)).!
   member (X , list (_ , L)) :- member (X , L).!

DO-4	

© Gunnar Gotshalks!

◊  Here is a predicate that defines the correspondence
between English and French words. 
!

   englishFrench1(English , French) :-!
   member (entry (English , French) ,!
   list (entry (book , livre) ,!
   list (entry (man , homme) ,!
   list (entry (apple , pomme) ,!
   empty))))!

English-French Dictionary – 3!

DO-5	

© Gunnar Gotshalks!

English-French Using Standard Lists!

◊  We could use the standard list structure.!
> The standard member predicate!
   member (X , [X | _]).!
   member (X , [_ | R]) :- member (X , R).!
> The translation predicate!
   englishFrench2 (English , French) :-!
   ! member (entry (English , French),!
   [entry (book , livre) ,!
   ! entry (man , homme),!
   ! entry (apple , pomme)]).!

DO-6	

© Gunnar Gotshalks!

English-French Different Dictionaries!

◊  We could change the rule to use a dictionary that holds
the list structure!

>  It is easier to understand the rule!

   englishFrench3 (English , French , Name) :-!
   dictionary (Name , Dictionary) ,!
   member (entry (English , French) , Dictionary)!

> where we have a fact defining the dictionary. 
It is easier to change the dictionary and to use it
in other contexts!

DO-7	

© Gunnar Gotshalks!

Different Dictionaries!

!
   Dictionary (Name , D) :- !
   Name = d1 , D = [entry (book , livre) ,!
   entry (man , homme) ,!
   entry (apple , pomme)] ;!

   Name = d2 , D = [entry (book , koob) ,!
   entry (man , nam) ,!
   entry (apple , elppa)] .!
!

DO-8	

© Gunnar Gotshalks!

Use an infix member function!

◊  The previous definition is not a natural way of representing
the member function!

◊  A more "natural" use of member is as an infix operator, as
in the following!

> Use the letter e to represent the mathematical
symbol belongs-to ()!

   englishFrench4 (English , French) :-!
   entry (English , French) e [entry (book , livre) ,!
   entry (man , homme) ,!
   entry (apple , pomme)!
  ] .!

∈

DO-9	

© Gunnar Gotshalks!

Use an infix member function!

◊  The infix operator e can be defined as follows!
   :- op (500 , xfy , [e]).!

> Later slides describe the meaning of the op
predicate!

◊  e is a new operator (predicate) so we must create rules
that define what it means!

> Since e is defined to be infix its rules use infix
syntax!

> Note the similarity with the definition of the
member predicate!

   X e [X | _].!
   X e [_ | L] :- X e L .!

DO-10	

© Gunnar Gotshalks!

Use an infix member function – 3!

◊  We can chose of the name of the operator !
   :- op (500 , xfy , [belongs_to]).!

   X belongs_to [X | _]. 
X belongs_to [_ | L] :- X belongs_to L .!

   englishFrench5 (English , French) :- 
 entry (English , French) 
 belongs_to 
 [entry (book , livre) , 
 entry (man , homme) , 
 entry (apple , pomme)!

  ].!

DO-11	

© Gunnar Gotshalks!

Bird – Mammal example!

◊  Define some properties of animals!
> Use syntax that is similar to natural language!

   :- op (100 , xfx , [has , isa , flies]).!

   Animal has hair :- Animal isa mammal.!
   Animal has feathers :- Animal isa bird.!

   owl isa bird.!
   cat isa mammal.!
   dog isa mammal.!

DO-12	

© Gunnar Gotshalks!

Example with mulitple precedence!

◊  Plays and "and" are at different precedence levels.!

◊  Define!
   :- op (300 , xfx , plays).!
   :- op (200 , xfy , and).!

◊  Example use!
   Term1 = jimmy plays football and squash.!
   Term2 = susan plays tennis and basketball 

 and volleyball.!

DO-13	

© Gunnar Gotshalks!

Example with mulitple precedence – 2!

◊  What is the internal stucture when using operators as in
the following?!
   Term1 = jimmy plays football and squash.!
   Term2 = susan plays tennis and basketball 

 and volleyball.!

◊  Recall that everything within Prolog is represented with
compound terms, so we have ...!
   Term1 = plays (jimmy , and (football , squash))!
   Term2 = plays (susan , and (tennis , 

 and (basketball , 
 volleyball)))!

DO-14	

© Gunnar Gotshalks!

Example with mulitple precedence – 3!

◊  DeMorgan's law – make predicate syntax look similar to
standard mathematics!
   :- op (800 , xfx , <==>). 

:- op (700 , xfy , v). 
:- op (600 , xfy , &). 
:- op (500 , fy , ~).!

◊  Consider representing the following!
   ~ (A & B) <==> ~A v ~B . Uses the above!

◊  In standard Prolog, this could be represented as!
   equivalence (not (and (A , B)) , 

 or (not (A) , not (B))).!
> or, directly use the internal form!

   '<==>' ('~' ('&' (A , B)) , 'v ' ('~' (A) , '~' (B))).!

DO-15	

© Gunnar Gotshalks!

Why have operators?!

◊  Introduce operators to improve the readability of
predicates!
» Can be infix, prefix or postfix!

◊  Operator definitions do not define any action, they only
introduce new notation!
» Operators are functors that hold together the

components of compound terms or structures!

◊  A programmer can define their own operators!
» with their own precedence and associativity!
» programmer defined operators can be merged in

precedence and associativity with the Prolog
builtin operators!

DO-16	

© Gunnar Gotshalks!

op Predicate!

◊  Define one or more operators with a given precedence,
associativity!
   op (precedence , 

 associativity , 
 symbol or symbol list 
)!

◊  Bratko page 77 gives a listing of the precedence of some
of the standard operators in Prolog!

DO-17	

© Gunnar Gotshalks!

op Precedence component!

◊  Precedence!
» between 0 and 1200 – the precedence class!
»  lower class numbers have higher priority!
» higher priority implies do first!
» Example!
   3 + 4 * 5 = 3 + (4 * 5)!
»  * (precedence class 400) has lower number than +

(precedence class 500) so times is done first!
» Can always use () to force the order of using

operators!
> Useful when you do not know relative

precedence or to make it clear to the reader!

DO-18	

© Gunnar Gotshalks!

Expression Precedence Class!

◊  Precedence class of base operand is 0.!

◊  Precedence class of expression with operator, oper, is the
precedence class of oper!

DO-19	

© Gunnar Gotshalks!

op Associativity component!

◊  Associativity!
» Defines which operands belong to which operator

when several operators are used in sequence!
» For example in the following!
   A oper B!

>  is oper a unary operator with operand A  
is oper a unary operator with operand B  
is oper a binary operator with operands A and B!

◊  Can define oper as unary operator with ...!
   op (100 , fy , oper). !-- unary prefix  

op (100 , fx , oper). !-- unary prefix  
op (100 , xf , oper). !-- unary postfix  
op (100 , yf , oper). !-- unary postfix!

DO-20	

© Gunnar Gotshalks!

Unary prefix associativity!

◊  f y!
   oper oper a . !-- legal syntax!

> oper a has equal precedence class with oper!
>  y says operand of oper can have lower or equal

precedence class!

◊  f x!
   oper oper a. !-- illegal syntax!

> oper a has equal precedence class with oper!
>  x says operand of oper must have lower

precedence class!
> must use () as follows!

   oper (oper a) .!

DO-21	

© Gunnar Gotshalks!

Unary postfix associativity!

◊  y f!
   a oper oper . !-- legal syntax!

>  a oper has equal precedence class with oper!
>  y says operand of oper can have lower or equal

class!

◊  x f!
   a oper oper . !-- illegal syntax!

>  a oper has equal precedence class with oper!
>  x says operand of oper must have lower

precedence class!
> must use ()!

   (a oper) oper .!

DO-22	

© Gunnar Gotshalks!

op Associativity component – 2!

◊  Given !
   A oper B!

◊  Can define oper as a binary operator with ...!
   op (100 , xfy , oper). -- right associative!
   op (100 , yfx , oper).! -- left associative!
   op (100 , xfx , oper). -- evaluate both operands first!
   op (100 , yfy , oper). -- not defined, ambiguous!

DO-23	

© Gunnar Gotshalks!

Right associative operator!

◊  Define!
   :- op (100 , xfy , op1).!

◊  Test!
> C becomes the full structure, L shows the

substructure !
   C = 1 op1 2 op1 3 op1 4 , C =.. L.!

◊  Result!
   C = 1 op1 2 op1 3 op1 4 !
   L = [op1 , 1 , 2 op1 3 op1 4] !

> Left most op1 is evaluated last!
> Apply recursively!

=.. univ operator!

DO-24	

© Gunnar Gotshalks!

Left associative operator!

◊  Define!
   :- op (200 , yfx , op2).!

◊  Test!
> C becomes the full structure, L shows the

substructure !
   C = 1 op2 2 op2 3 op2 4 , C =.. L.!

◊  Result!
   C = 1 op2 2 op2 3 op2 4 !
   L = [op2 , 1 op2 2 op2 3 , 4] !

> Right most op2 is evaluated last!
> Apply recursively!

DO-25	

© Gunnar Gotshalks!

Evaluate both operands first!

◊  Define!
   :- op (300 , xfx , op3).!

◊  Test!
   C = 1 op3 2 op3 3 op3 4 , C =.. L.!

◊  Result!
   C = 1 op3 2!
   « Syntax Error - check operator precedences » op3

3 op3 4 , C =.. L. !
> Error because the middle op3 expects its operands

to its left and right to have lower precedence class
but they have equal precedence class!

DO-26	

© Gunnar Gotshalks!

Evaluate both operands first – 2!

◊  Define!
   :- op (300 , xfx , op3).!

◊  Test – with different operators to left and right of op3!
   C = 1 op1 2 op3 3 op2 4 , C =.. L.!

◊  Result!
   C = 1 op1 2 op3 3 op2 4 !
   L = [op3 , 1 op1 2 , 3 op2 4] !

> op1 and op2 are done first (higher priority, lower
precedence class)!

> op3 is done last!

