
EX-1	

© Gunnar Gotshalks!

Example predicates!
!

Showing things to look for!

EX-2	

© Gunnar Gotshalks!

Infinite loops!

◊  Avoid circular definitions!
   parent (A, B) :- child (B, A).!
   child (C, D) :- parent (D, C). !

◊  Easy to see here but as database grows you can forget
what is in it and circularity can creep in!

EX-3	

© Gunnar Gotshalks!

Infinite loops – Left Recursion – 1!

◊  Left recursion can cause problems!
   person (X) :- person (Y) , mother (Y, X).!
   person (eve).!

» The query person (P) loops indefinitely as the
first rule is found first on every recursive call.!

» Second rule is only tried if first rule fails!

◊  Reordering the rules will correct the problem!

Heuristic  
Put facts before rules!

EX-4	

© Gunnar Gotshalks!

Infinite loops – Left Recursion – 2!

◊  Left recursion can cause problems – continued!
   person (eve).!
   person (X) :- person (Y) , mother (Y, X).!

» Assuming mother fails, the query person (P)
loops indefinitely after P = eve!

◊  Left recursion is the problem!

Do not assume Prolog will find the facts and rules.!
Need to know how searching works!

EX-5	

© Gunnar Gotshalks!

Multiple answers – isList, weakList!

◊  The following gives the following predicate works for
specific lists but loops forever on the query isList (X).!

   isList ([A | B]) :- isList (B). 
isList ([]).!

◊  It can be defined by putting the fact first.!
   isList ([]). !
   isList ([A | B]) :- isList (B).!

◊  But gives more than one answer for the query isList (X)
but does not loop forever.!

◊  For the latter query, to have only one answer, can assert
the following.!

   weak_isList ([]). 
weak_isList ([_ | _]).!

EX-6	

© Gunnar Gotshalks!

Why is weak_isList weak?!

◊  The strong definition says a list must have the correct
structure and must end in nil.!

◊  The weak definition simply says the list must have the
correct structure for one level and says nothing about nil
except for the empty list.!

◊  For example – recall [...] is shorthand for the structure  
 .(...)!

   isList (.(a , [])). ==> yes  
isList (.(a , .(b , []))). ==> yes  
isList (.(a , .(b, .(c , [])))). ==> yes  
isList (.(a , b)). ==> no 
isList (.(a , .(b , c , []))). ==> no!

◊  But all responses are yes for weak_isList!

EX-7	

© Gunnar Gotshalks!

Mapping!

◊  Consider the problem of translating a sentence from one
form to another!
» For example as in the following "dialogue" the

second sentence is a translation of the preceding
sentence!

>  you are a computer  
I am not a computer!

> do you speak french 
no I speak german!

» Assume the following simplistic translations!
>  you ==> I 

are ==> am not  
do ==> no 
french ==> german!

EX-8	

© Gunnar Gotshalks!

Mapping – 2!

◊  Let us represent sentences as a list of words!
   you are a computer ==> [you , are , a , computer]!

◊  We represent the list of words to change as a set of
change rules!

   change (you , I).!
   change (are , [am , not]).!
   change (french , german).!
   change (do , no).!
   change (X , X). /* catch all to make no 

 changes */!

EX-9	

© Gunnar Gotshalks!

Mapping – 3!

◊  Then the translation rules can be the following.!
   alter ([] , []). 

alter ([H | T] , [X | Y]) :- change (H, X) , alter (T, Y).!

◊  Then we can translate our example sentences!
   alter ([you, are, a, computer] , Trans).!

> Trans = [I , am , not , a , computer]!
» Try using ;<return> on the above. Explain why there are

multiple answers. Try a trace to see what is happening.!
> We need a method to prevent multiple answers!

EX-10	

© Gunnar Gotshalks!

Mapping – 4!

◊  Try the inverse – with ;<return>!
   alter (Org , [I , am , not , a , computer]).!

◊  Try a variable – with ; <return>!
   alter ([you , are , a , X] , Trans)!

EX-11	

© Gunnar Gotshalks!

Warning – Caution – Danger!

  Logic and a finite database!
  can lead to strange!

  and unexpected results.!
  Use with extreme caution.!

