List utility predicates

© Gunnar Gotshalks UT-1



member ( X, L)

¢ ltem X is a member of the list L.

Reduce the list — second rule —
until first in list — first rule.
or empty — no rule so fail -

member ( X, [ X1 _]).
member ( X,[ _IRL]) :- member (X, RL).

¢ Note the use of the anonymous variable _

» We do not care about the value of the rest in the
first rule, nor the value of first in the second rule

» Typically use it when it is the only instance of that
variable in the rule

© Gunnar Gotshalks UT-2



append (L1,L2,R)

¢ R s the result of appending list L2 to the end of list L1.

append ([],L,L).
— Appending to nil yields the original list.

append ([ XIL1],L2,[XIL3])
- append (L1,L2,L3).

> Simultaneous recursive descent on L1 & L3 first
of the left list is the first of the result.

Pattern
Li=abc L2=2345 L3=abc2345
=[al[b,c]] =[al[b,c, 2,3, 4,5]]

© Gunnar Gotshalks UT-3



append (L1,L2,R) -2

¢ Queries — ask for results in all combinations. Not like Java
or C where functions are programmed for only one query

append ([1,2,3],[a,b,c],R).
> What is the result of appending L1 and L2?

append(L1,[a,b,C],[1,2,3,a,b,C])-
>What L1 gives[1,2,3,a,b,c]when
appended with [a,b,c]?

append([1,2,3],L2,[1,2,3,a,b,C])-

>What L2 gives[1,2,3,a,b,c]when
appendedto[1,2,3]?

© Gunnar Gotshalks UT-4



append (L1,L2,R)-3

append (L1,L2,[1,2,3,a,b,c]).
>What L1 and L2 gives[1,2,3,a,b,c]when
L2 is appended to L1?
append (L1,L2, R).
> What L1 and L2 give R? Infinite number of
answers
append ( Before , [Middle | After], List).

> If middle is defined we can get the before and
after

append ( Before, [4 | After], [1,2,3,4,5,6,7] ).

© Gunnar Gotshalks UT-5



Last predicate defined using append

¢ Define the predicate Last ( ltem , List ) that asserts Item
is the last element of the list List.

Last ( ltem, List) :-append ( _,[Item ], List).

© Gunnar Gotshalks UT-6



Shift predicate using append

¢ Define the predicate shift ( List , Shifted ) that asserts
Shifted is the List rotated by one element to the left.

shift ([ Head | Tail ], Shifted ) :-
append ( Tail , [ Head ], Shifted ) .

© Gunnar Gotshalks UT-7



Reverse predicate using append

¢ Define the predicate reverse ( List , ReversedList ) that
asserts ReversedList is the List in reverse order.

reverse ([]1,[1]1) -

reverse ( [Head | Tail ], Reversed ) :-
reverse ( Tail , ReversedTail ),
append ( ReversedTail , [ Head ], Reversed ) .

© Gunnar Gotshalks UT-8



Trace —append (P,[a],[1,2,3,a])

¢ Variables are renamed every time a rule is used for
matching
append ([],L,L).
append ([ XIL1],L2,[XIL3])
- append (L1,L2,L3).

O Try to match rule 1
P=[] [a]=L_1 [1,23,a]=L_1

From query = From rule

¢ 1 —Fall, try to match rule 2
P=[X_2I1L1_2] [a]=L2 2 [1,2,3,a]=[X_21L3_2]

» Succeed with X 2=1 L2 2=[a] L3 2=[2,3,a]

© Gunnar Gotshalks UT-9



Trace —append (P,[a],[1,2,3,a])-2

append ([],L,L).
append ([ XIL1],L2,[XIL3])
- append (L1,L2,L3).

¢ Try to matchrule 1 append(L1_2, [a], [2,3,a])
L1 2=[] [a]=L_3 [2,3,a]=L_3

¢ 2 —Fail, try to match rule 2
L1 2=[X 41L1. 4] [a]=L2 4 [2,3,a]=[X_41L3 4]

» Succeed with X 4=2 L2 4=[a] L3 _4=[3,a]

¢ Try to matchrule 1 append(Li1_4, [a], [3,a])
L1 4=[] [a]=L 5 [3,a]=L_5

© Gunnar Gotshalks UT-10



Trace —append (P,[a],[1,2,3,a])-3

append ([],L,L).
append ([ XIL1],L2,[XIL3])
- append (L1,L2,L3).

¢ 3 —Fail, try to match rule 2
L1 4=[X_61L1 6] [a]=L2 6 [3,a]=[X_61L3 6]

» Succeed with X_6=3 L2 6=[a] L3_6=][a]

¢ Try to matchrule 1 append(L1_6, [a], [a])
L1 6=[] [a]=L 7 [a]=L_7

¢ Succeed, recursion stops, backtrack and substitute values

© Gunnar Gotshalks UT-11



Trace —append (P,[a],[1,2,3,a])-4

¢ Instep 3
L1 4=[3I1[]1]1=]3]

¢ In step 2 we had
L1 2=[X_41L1_4] L2 4=[a] [2,3,a]=[X_41L3_4]
» Succeed with X 4=2 L2 4=[a] L3 4=[3,a]
» and from Step 3 L1_4 =[3]
» Thus L1_2=[2, 3]
¢ In step 1 we had
P=[X_2I1L1_2] [a]=L2 2 [a,1,2,3]=[X_21L3_2]
» Succeed with X 2=1 L2 2=[a] L3 2=[2,3,a]
» and from Step 2 L1_2=[2, 3]
» Thus P=[1, 2, 3]

© Gunnar Gotshalks UT-12



delete (X,L,R)

¢ R s the result of deleting item X from the list L.
Remove if first in the list.
delete ( X,[XIR],R).

If not the first then remove from the next
smaller sublist.

delete (X,[YIL],[YIR]) :- delete (X,L,R)

The SWI Prolog built-in predicate delete does not
work as the above definition. Arguments are in a
different order and have different meaning.

© Gunnar Gotshalks UT-13



prefix (P, L)

0 P is a prefix of the list L. It can be defined using append
as follows.

prefix (P,L) :- append (P, _ ,L).

> P is a prefix of L if something, including nil, can
be suffixed to P to form L.

© Gunnar Gotshalks UT-14



prefix (P,L) -2

¢ We can define prefix in terms of itself as follows.

List PPPPPPXXXXX ==> XXXXX
Prefix YYYYYY - Empty

rannnn o Check equality until Prefix is
exhausted.

¢ The base case is having the empty list as the prefix.
prefix ([ 1,_).

¢ The recursive case is having the first items on the prefix
and the list being the same and the reduced prefix and list
satisfy the prefix property.

prefix ([AIB],[AIC]) :- prefix (B, C).

© Gunnar Gotshalks UT-15



suffix (S, L)

¢ S is a suffix of the list L. It can be defined using append
as follows.

suffix (S,L) :- append(_,S,L).

> S is a suffix of L if something, including nil, can
be prefixed to S to form L.

© Gunnar Gotshalks UT-16



suffix (S, L) -2

¢ We can define suffix in terms of itself as follows.

List PPPPPPXXXXX ==> XXXXX
Suffix YYYYY YYYYY

ARARARARARS Reduce the prefix part of the List.
¢ In the base case the suffix is the list.
suffix (L, L).
¢ The recursive case is to reduce the size of the prefix of the
list.
suffix (S,[_IL]) :- suffix(S,L).

© Gunnar Gotshalks UT-17



sublist (S, L)

¢ Sis a sublist of L can be defined using append as follows.

sublist(S,L) :- append(_,S, Lt),
append (Lt, _,L).

> S is a sublist of L if something, including nil,
can be prefixed to S to form the list Lt

> And something, including nil, can be suffixed to
Lt to form L.

¢ In other words, S is a sublist of L if there exists a prefix P
to Sand asuffix TtoSsuchthat L=PISIT

> where || means concatenate.

© Gunnar Gotshalks UT-18



sublist(S,L)

¢ We can define sublist in terms of itself and prefix as

follows.
List PPPPSSSSSXXXXXX ==> SSSSSXXXXXX
Sublist YYYYY YYYYY

AANANAN

Reduce the prefix part of the List.
¢ In the base case the sublist is the prefix of the list.
sublist (S,L) :- prefix (S, L).

¢ The recursive case is to reduce the size of the prefix of the
list.

sublist (S,[_IL]) :- sublist(S,L).

© Gunnar Gotshalks UT-19



removeAllTop (ltem, List, Result)

¢ Asserts that Result is List with all occurrences of ltem
removed from the top level of List .

removeAllTop (_, [], [])-

removeAllTop (Item, [ltem | Lt], R) :-
removeAllTop (Item, Lt, R).

removeAllTop (Item, [H | Lt], [H | Rt]) :-
ltem\=H,
removeAllTop (Item, Lt, Rt).

© Gunnar Gotshalks

UT-20



removeAll (Item, List, Resulit)

¢ Asserts that Result is List with all occurrences of ltem
removed from all levels of List .

removeAll (_, [], [])-

removeAll (Iltem, [Item | Lt], R) :-
removeAll (ltem, Lt, R).

removeAll (Item, [H | Ltl, [H | Rt]) :-
item\=H,H\=[_1],
removeAll (Item, Lt, Rt).

removeAll (ltem, [Lh | Lt], [Rh | Rt]) :-
item\=Lh,Lh=[11],
removeAll (Item, Lh, Rh)
removeAll (ltem, Lt, Rt).

© Gunnar Gotshalks

UT-21



