
1

Sequence Abstract Data Type
Gunnar Gotshalks
2007 December

Table of Contents

Introduction .. 1
Objects for the sequence data type ... 2

The sequence as an object ... 2.1
Sequence components ... 2.2

Operations on sequences ... 3
Enquiry operations .. 4

Read operations .. 4.1
Write operations .. 4.2

Dictionary ... 5
Operation interactions .. 6
Physical representations for sequences ... 7

Array implementation .. 7.1
Circular array implementation ... 7.2
Linked list implementation ... 7.3
Singly linked list put & take operations .. 7.4
Doubly linked list put & take operations .. 7.5

Sequence Interface .. 8

1 Introduction
The sequence data type is one of the fundamental data types in computer science. Many other
data types such as text files, stacks and queues are variations on the sequence theme. Even
strings can be thought of as sequences of characters, although this does not seem to be as
useful or natural as it might at first appear. Problems occur, for example, with operations
such as sub string, index and replace. Thus, in our study of sequences we will not include the
notion of strings but will treat strings as an independent fundamental structure.

From a theoretical perspective, once the sequence and set abstract data types are available,
it is possible to program without reference to arrays and linked lists although arrays and
linked lists are used to implement sequences and sets.

A sequence consists of a homogeneous ordered collection of objects of any type. Note the
similarity with the concept of an array. Where the sequence differs from an array is that, in
a sequence, we distinguish, and give special names to the two ends of the sequence.
Furthermore, we can only access the objects which are at the ends of the sequence. There are
no operations which delve into the middle of the sequence to examine and/or modify sequence
items.

Stacks, queues, double ended queues and files are examples of sequences as normal
operations work only at the ends.

Gunnar Gotshalks
This is an annotated report describing the structure of a stand-alone report. The actual contents varies depending upon the purpose of the report. In this case the report describes an ADT.

Gunnar Gotshalks

Gunnar Gotshalks
Page number

Gunnar Gotshalks

Gunnar Gotshalks

Gunnar Gotshalks
Title

Gunnar Gotshalks
Author(s)

Gunnar Gotshalks
Date

Gunnar Gotshalks

Gunnar Gotshalks

Gunnar Gotshalks

Gunnar Gotshalks

Gunnar Gotshalks

Gunnar Gotshalks
Section numbers

Gunnar Gotshalks

Gunnar Gotshalks

Gunnar Gotshalks
Section headings

Gunnar Gotshalks

Gunnar Gotshalks

Gunnar Gotshalks
Sections are
numbered
starting at 1

Gunnar Gotshalks

2 Sequence ADT

2 Objects for the sequence data type
A sequence consists of five entities.

2.1 The sequence as an object
The first entity is the sequence as a whole. The entire sequence is passed as a parameter to
the operations and the sequence is operated upon as a single entity.

The value of a sequence is denoted as a list of items, separated by commas and enclosed in
angular brackets, as in the examples shown below.

Examples

1. is the empty sequence containing no members.
2. x is a sequence containing only the object x.
3. x,y,z consists of the three members x, y and z, in that order.
4. x1, ! , xn consists of n members x1 through xn inclusive.

2.2 Sequence components
Figure 1 shows the components of a sequence and their relationship.

The first item in a sequence is called the head. The last item in a squence is called the last.
Complementing the head and last items are the sub sequence tail that consists of all of the
sequence except for the head item, and the front that consists of all of the sequence except
for the last item.

!"#$%&"'

()*+! $",!

,&-.&+/&!"!#%&"'$!%!!"#$!"!()*+!!%!#$",!$

Figure 1: The components of a sequence.

3 Operations on sequences
You should be aware that the names of the various operations are often changed for a specific
instantiation of sequences. For example, put_head and take_head could be called push and pop
for stacks.

4 Enquiry operations
We only define one operation.

4.0.1 What is the length of a sequence?

length(s : SEQUENCE) : integer

require s void
ensure Result = #s

The length is never a negative integer. The empty sequence, , always has length 0.

Gunnar Gotshalks

Gunnar Gotshalks
Even page header for two sided printing
For one sided printing all page numbers on the right

Gunnar Gotshalks

Gunnar Gotshalks
Subheadings appropriately numbered

Gunnar Gotshalks

Gunnar Gotshalks

Gunnar Gotshalks
Diagrams and tables numbered and labeled

Gunnar Gotshalks

Gunnar Gotshalks
Diagrams and tables
cross-referenced in
the body of the report.

Gunnar Gotshalks

Fundamentals of Data Structures 3

The length of a sequence is defined by the following recursive definition.
1 # = 0
2 # x = 1
3 #(s^t) = #s + #t

Program text is not referenced

4.1 Read operations
There are two read operations.

4.1.1 Read the front object from a sequence

read_head(s : SEQUENCE) : SEQ_TYPE

require #s > 0
ensure Result = s(1) = head s

Program text is not referenced

4.1.2 Read the rear object from a sequence

read_last(s : SEQUENCE) : SEQ_TYPE

require #s > 0
ensure Result = s(#s) = last s

Program text is not referenced

4.2 Write operations

4.2.1 Create a new sequence

create(seq_parameters) : SEQUENCE

require The sequence does not exist. seq_parameters contains all the attributes we want the
sequence to have including its name and base type.
ensure A empty sequence is created.

Program text is not referenced

4.2.2 Dispose of an existing sequence

dispose(s : SEQUENCE)

require s void

ensure The sequence s is removed from the system.
Program text is not referenced

4.2.3 Initialize a sequence to the empty state

init(s : SEQUENCE)

Gunnar Gotshalks
Odd-page header for two sided printing

Gunnar Gotshalks

Gunnar Gotshalks
Use appropriate headings and level numbers

Gunnar Gotshalks

Gunnar Gotshalks

Gunnar Gotshalks

4 Sequence ADT

require s void
ensure s =

Program text is not referenced

4.2.4 Take the first item from a sequence

take_head(s : SEQUENCE)

require #s 0
ensure s’ = tail s

Program text is not referenced

4.2.5 Take the last item from a sequence

take_rear(s : SEQUENCE)

require #s 0
ensure s’ = front s

Program text is not referenced

4.2.6 Put a new item at the front of a sequence

put_head(s : SEQUENCE ; item : SEQ_TYPE)

require s void
ensure s’ = item ^ s

Program text is not referenced

4.2.7 Put a new item at the rear of a sequence

put_last(s : SEQUENCE ; item : SEQ_TYPE)

require s void
ensure s’ = s ^ item

Program text is not referenced

4.2.8 Concatenate two sequences

append(s , t : SEQUENCE)

require s void t void
ensure s’ = s ^ t

The append operator obeys the following laws, where s, t and u are sequences.
L1 s ^ = ^ s = s
L2 s ^ (t ^ u) = (s ^ t) ^ u
L3 s ^ t = s ^ u t = u
L4 t ^ s = u ^ s t = u
L5 s ^ t = s= t=

Program text is not referenced

Fundamentals of Data Structures 5

4.2.9 Exercises
What sequence operations would correspond to the following data structures operations?

1. Stack operations push and pop.
2. Qeueue operations enqueue and dequeue.
3. File operations read and write.

5 Dictionary
All examples assume that s = x,y,z .

"## head is the first item in a sequence front s = x.
"## tail is the sequence without the first item tail s = y, z .
"## last is the last item in a sequence. last s = z.
"## front is the sequence without the last item front s = x, y .
"## #s is length of the sequence s #s = 3.

See the specification of the operation length for a formal definition of the length
of a sequence.

"## is the empty sequence. It has length zero.
"## rev s is reverse of the sequence s rev s = z, y, x .
"## ^ is the concat operator; it means append s ^ a, b, c = x, y, z, a, b, c .

6 Operation interactions
The following is a sequence of axioms that show the the results of using multiple sequence
operators.

1. read_head(put_head(s,x)) = x
Putting item x to the head of a sequence and then reading the head of the sequence we
have the item x.
Note that in an axiomatic representation all procedures are assumed to be functions
that return the modified sequence.

2. read_last(put_last(s,x)) = x
Putting item x to the last of a sequence, then reading the last of the sequence gives
the item x.

3. put_head(take_head(s), read_head(s)) = s
Putting the head of a sequence s to tail of the sequence s gives the sequence s.
(See Figure 1).

4. put_last(take_last(s), read_last(s)) = s
5. create = = init
6. read_head() = error
7. read_read() = error
8. take_head() = error
9. take_last() = error

7 Physical representations for sequences
Sequences in memory are represented using arrays and linked lists.

6 Sequence ADT

7.1 Array implementation
In mathematics we think of a sequence as being a vector or one dimensional matrix as shown in
Figure 2.

!"""""#"""""$"""""%"""""&""""'""""("""")"""""*

Figure 2: Sequence reqpresented as a vector.

When taking from the head of the sequence, the array elements are shifted as shown in
Figure 3. The operation is O(n) in time.

∀!"!#!$!%%!&'()*+!,!-./"012!3!-/"2!
-

-.

Figure 3: Array sequence take_head operation.

When putting to the head of the sequence, the array elements are shifted as shown in
Figure 4. The operations is O(n) in time.

∀!"!#!$!%%!&'()*+!,!-./"0$1!2!-/"1
-./$1!2!('345*'6!

-

-.

Figure 4: Array sequence put_head operation.

7.2 Circular array implementation
Since arrays are fixed in size, we can logically think of wrapping the array in a circle with
last element following preceeding the first element as shown in Figure 5. The array bounds are
set to 0 .. n 1 to simplify the arithmetic. The put_head and take_head operations are shown in
Figure 5. The operations are O(1) in time.

!!!

!"# $
#

%

!"%

!"&

'()*
+),-

./-0'()*
""""#$%&'"(")#$%&"*"+,"-.&"/
""""0'1#$%&'2"("/$3456$-

-)1(0'()*
""""#$%&'"(")#$%&"*"+,"-.&"/

Figure 5: Circular array sequence put and take head operations.

Fundamentals of Data Structures 7

7.2.1 Exercise
Write the put_last and take_last circular array operations.

7.3 Linked list implementation
The elements of the sequence are physically separated but are logically linked with pointers
indicating the sequence order, as shown in Figure 6. Both Singly and doubly linked lists
require O(n) extra space for the pointers, even though doubly linked lists have twice the extra
space overhead of singly linked lists.

!!!

"#$%

&$'(

)#*(
!!!

"#$%

)#*(+,#-

&$'(

'.)/&01&.)2#%1&.'(%345&01&.)2#%1&.'(

Figure 6: Singly and Doubly linked list implementations of sequences.

7.4 Singly linked list put & take operations
The put_head and take_head operations are shown in Figure 5. The operations are O(1) in time.

!"#$

%"&'

!"#$ "(")"%'

*+',!"#$-"(")"%'.
"(")"%'!%"&'/"#"!"#$
!"#$/010"(")"%'

'#2",!"#$!"#$/010!"#$3%"&'

Figure 7: Singly linked list operations at head.

8 Sequence ADT

The put_last operation is shown in Figure 8. The operation is O(1) in time.

!"#$

%&$'!"#$()!)*)+$,
)!)*)+$!+)-$."#"+&!!
!"#$/+)-$.010)!)*)+$
!"#$.010)!)*)+$

!"#$)!)*)+$

Figure 7: Singly linked list operation put_last.

The take_last operation is shown in Figure 9. In this case an algorithm is given, as only
an algorithm can show the sequence of state changes needed to achieve the post_condition. The
operation is O(n) in time.

!"#$

%&"'

$((

$(

$((

$(

$((

$(

)*+$+"!+,"$+-*

./$&0123#$1!--(

./$&0143$%1!--(
51$&06+*"$+-*

!"#$1"$1$&06+*"$+-*

!!"# !"#$$!%!&'! !!"#$
%!&'"!&'! !'#()!$*
!!!!&''! !&'!%!&'! !&'(+",)!*$
'#()! !&''
&-!'#()!)!"#$$!)!"+!!"#$! !"#$$!!

Figure 9: Singly linked list operation take_last.

Fundamentals of Data Structures 9

7.5 Doubly linked list put & take operations
The put_head and take_head operations are shown in Figure 10. The operations are O(1) in time.

!"#$

%"&'

!"#$ "(")"%'

*+',!"#$-"(")"%'.
"(")"%'!%"&'/"#"!"#$
!"#$0*1"2343"(")"%'
!"#$/343"(")"%'

'#5",!"#$!"#$/343!"#$0%"&'
!"#$/0*1"2343%+((

Figure 10: Doubly linked list operations at head.

The put_last and take_last operations are shown in Figure 11. The operations are O(1) in
time.

!"#$

%&$'()*$+"(","!$-
"(","!$!%."/0"#"()*$121"(","!$3!"#$0141!&((1
()*$3!"#$0141"(","!$
()*$0141"(","!$

$)5"'()*$()*$0141()*$3%."/
()*$03%."/141!&((

()*$ "(","!$

()*$ %."/

%."/

!"#$

Figure 11: Doubly linked list operations at last.

10 Sequence ADT

8 Sequence Interface
Sequences are containers. Figure 12 shows the relationship between sequences and containers in
BON (Business Object Notation). The diagrams assume that the operations put_last and take_last
are implemented by the add and remove routines in the CONTAINER class.

!"#$%&#'()*
!""#$

%&'()&#$

+',-'#!')*
+,-./&!"#$
-!0&./&!"#$

1%%(2#'&!34#53/&%5-4#6&7-&3"48#

$#'&!34#"&9&%%&":3(;5'+<&'&3-!-5(3

+',.%((%/
0

+,-./&!"#=
-!0&./&!"#=

!""#=
%&'()&=

+',.!&(!-1%(
0

+,-./&!"#=
-!0&./&!"#=

!""#=
%&'()&=

+',.+11
0

+,-./&!"#=
-!0&./&!"#=

!""#=
%&'()&=

+',.211
0

+,-./&!"#=
-!0&./&!"#=

!""#=
%&'()&=

=#'&!34#&99&>-5)&:5'+<&'&3-&"

Figure 12: BON structure diagram for sequences.

The following program text shows how the interface could look in Java.

public interface SEQUENCE extends CONTAINER {
 void put_head(Object object);
 void take_head();
 void add(Object object); // Implement as put_last
 void remove(); // Implement as take_last

 // Other operations that could be in CONTAINER and SEQUENCE
}

Program text is not referenced

