
2/10/2015 CSE 3214 - S.Datta 2

Inserting records into DNS

 Example: just created startup “Network Utopia”
 Register name networkuptopia.com at a registrar (e.g.,

Network Solutions)
 Need to provide registrar with names and IP

addresses of your authoritative name server (primary
and secondary)

 Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

 Put in authoritative server Type A record for
www.networkuptopia.com and Type MX record for
networkutopia.com

 How do people get the IP address of your Web site?

2/10/2015 CSE 3214 - S.Datta 3

Attacking DNS
DDoS attacks
 Bombard root servers with traffic

 Not successful to date
 Traffic Filtering
 Local DNS servers cache IPs of TLD servers, allowing root server

bypass
 Bombard TLD servers

 Potentially more dangerous
Redirect attacks
 Man-in-middle

 Intercept queries
 DNS poisoning

 Send bogus relies to DNS server, which caches
Exploit DNS for DDoS
 Send queries with spoofed source address: target IP
 Requires amplification

2/10/2015 CSE 3214 - S.Datta 4

P2P file sharing

Example
 Alice runs P2P client

application on her
notebook computer

 Intermittently connects to
Internet; gets new IP
address for each
connection

 Asks for “Hey Jude”
 Application displays other

peers that have copy of
Hey Jude.

 Alice chooses one of the
peers, Bob.

 File is copied from Bob’s
PC to Alice’s notebook:
HTTP

 While Alice downloads,
other users uploading from
Alice.

 Alice’s peer is both a Web
client and a transient Web
server.

All peers are servers = highly
scalable!

2/10/2015 CSE 3214 - S.Datta 5

Pure P2P architecture

 no always-on server
 arbitrary end systems

directly communicate
 peers are intermittently

connected and change IP
addresses

examples:
 file distribution

(BitTorrent)
 Streaming (KanKan)
 VoIP (Skype)

2/10/2015 CSE 3214 - S.Datta 6

P2P: centralized directory

original “Napster” design
1) when peer connects, it

informs central server:
 IP address
 content

2) Alice queries for “Hey Jude”
3) Alice requests file from Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

2/10/2015 CSE 3214 - S.Datta 7

P2P: problems with centralized directory

 Single point of failure
 Performance bottleneck
 Copyright infringement

 file transfer is
decentralized, but
locating content is
highly decentralized

2/10/2015 CSE 3214 - S.Datta 8

Query flooding: Gnutella

 fully distributed
 no central server

 public domain protocol
 many Gnutella clients

implementing protocol

overlay network: graph
 edge between peer X and

Y if there’s a TCP
connection

 all active peers and edges
is overlay net

 Edge is not a physical link
 Given peer will typically be

connected with < 10
overlay neighbors

2/10/2015 CSE 3214 - S.Datta 9

Gnutella: protocol

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTPr Query message

sent over existing TCP
connections
r peers forward
Query message
r QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

2/10/2015 CSE 3214 - S.Datta 10

Gnutella: Peer joining

1. Joining peer X must find some other peer in Gnutella
network: use list of candidate peers

2. X sequentially attempts to make TCP with peers on list
until connection setup with Y

3. X sends Ping message to Y; Y forwards Ping message.
4. All peers receiving Ping message respond with Pong

message
5. X receives many Pong messages. It can then setup

additional TCP connections
Peer leaving?

2/10/2015 CSE 3214 - S.Datta 11

Exploiting heterogeneity: KaZaA

 Each peer is either a group
leader or assigned to a
group leader.
 TCP connection between

peer and its group leader.
 TCP connections between

some pairs of group leaders.

 Group leader tracks the
content in all its children.

ordinary peer

group-leader peer

neighoring relationships
in overlay network

2/10/2015 CSE 3214 - S.Datta 12

KaZaA: Querying

 Each file has a hash and a descriptor
 Client sends keyword query to its group leader
 Group leader responds with matches:

 For each match: metadata, hash, IP address

 If group leader forwards query to other group leaders, they
respond with matches

 Client then selects files for downloading
 HTTP requests using hash as identifier sent to peers holding

desired file

2/10/2015 CSE 3214 - S.Datta 13

Kazaa tricks

 Limitations on simultaneous uploads
 Request queuing
 Incentive priorities
 Parallel downloading

2/10/2015 CSE 3214 - S.Datta 14

P2P services

 File sharing – Napster, Gnutella, Kazaa….
 Communication – Instant messaging, VoIP (Skype)
 Computation seti@home
 DHTs – Chord, CAN, Pastry, Tapestry….
 Applications built on emerging overlays Planetlab
 P2P file systems – Past, Farsite
 Wireless Ad-hoc Networking?

2/10/2015 CSE 3214 - S.Datta 15

Overlay graphs

 Edges are TCP connections or pointer to an IP address
 Edges maintained by periodic “are you alive” messages.
 Typically new edge established when a neighbor goes

down
 New nodes BOOTSTRAP
 Structured vs Unstructured

2/10/2015 CSE 3214 - S.Datta 16

Structured overlays

 Edges arranged in a preplanned manner.
 DNS is an example of a structured overlay (but not P2P)
 Mostly still in the research stage – so has not made it to

the textbook!

2/10/2015 CSE 3214 - S.Datta 17

Challenge: locating content

 Gnutella-type search – expensive, no guarantee, need
many cached copies for technique to work well.

 Directed search – assign particular nodes to hold
particular content (or pointers to it).

 - Problems:
 Distributed
 Handling join/leave

2/10/2015 CSE 3214 - S.Datta 18

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from one server to N
peers?
 peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
 bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

2/10/2015 CSE 3214 - S.Datta 19

File distribution time: client-server
 server transmission: must

sequentially send (upload)
N file copies:
 time to send one copy: F/us
 time to send N copies:

NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach

 Dc-s > max{NF/us,,F/dmin}

 client: each client must
download file copy
 dmin = min client download

rate
 min client download time:

F/dmin

us

network
di

ui

F

2/10/2015 CSE 3214 - S.Datta 20

File distribution time: P2P
 server transmission: must

upload at least one copy
 time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network
di

ui

F

 DP2P > max{F/us,,F/dmin,,NF/(us + ui)}

 client: each client must
download file copy
 min client download time:

F/dmin
 clients: as aggregate must download NF bits

 max upload rate (limiting max download rate) is us +
ui

… but so does this, as each peer brings service capacity
increases linearly in N …

2/10/2015 CSE 3214 - S.Datta 21

Client-server vs. P2P: example
client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

2/10/2015 CSE 3214 - S.Datta 22

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a
file

Alice arrives …

 file divided into 256Kb chunks
 peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

2/10/2015 CSE 3214 - S.Datta 23

 peer joining torrent:
 has no chunks, but will

accumulate them over time
from other peers

 registers with tracker to get list
of peers, connects to subset of
peers (“neighbors”)

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers
 peer may change peers with whom it exchanges chunks
 churn: peers may come and go
 once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

2/10/2015 CSE 3214 - S.Datta 24

BitTorrent: requesting, sending file chunks

requesting chunks:
 at any given time, different

peers have different subsets of
file chunks

 periodically, Alice asks each
peer for list of chunks that they
have

 Alice requests missing chunks
from peers, rarest first

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending
her chunks at highest rate
 other peers are choked by Alice

(do not receive chunks from
her)

 re-evaluate top 4 every10 secs
 every 30 secs: randomly

select another peer, starts
sending chunks
 “optimistically unchoke” this

peer
 newly chosen peer may join top

4

2/10/2015 CSE 3214 - S.Datta 25

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file
faster !

2/10/2015 CSE 3214 - S.Datta 26

Distributed Hash Table (DHT)

 Hash table

 DHT paradigm

 Circular DHT and overlay networks

 Peer churn

2/10/2015 CSE 3214 - S.Datta 27

Key Value

John Washington 132-54-3570

Diana Louise Jones 761-55-3791

Xiaoming Liu 385-41-0902

Rakesh Gopal 441-89-1956

Linda Cohen 217-66-5609

……. ………

Lisa Kobayashi 177-23-0199

Simple database with(key, value) pairs:
• key: human name; value: social security #

Simple Database

• key: movie title; value: IP address

2/10/2015 CSE 3214 - S.Datta 28

Original Key Key Value

John Washington 8962458 132-54-3570

Diana Louise Jones 7800356 761-55-3791

Xiaoming Liu 1567109 385-41-0902

Rakesh Gopal 2360012 441-89-1956

Linda Cohen 5430938 217-66-5609

……. ………

Lisa Kobayashi 9290124 177-23-0199

• More convenient to store and search on
numerical representation of key
• key = hash(original key)

Hash Table

2/10/2015 CSE 3214 - S.Datta 29

 Distribute (key, value) pairs over millions of peers
 pairs are evenly distributed over peers

 Any peer can query database with a key
 database returns value for the key
 To resolve query, small number of messages exchanged among peers

 Each peer only knows about a small number of other peers
 Robust to peers coming and going (churn)

Distributed Hash Table (DHT)

2/10/2015 CSE 3214 - S.Datta 30

Assign key-value pairs to peers

 rule: assign key-value pair to the peer that has the
closest ID.

 convention: closest is the immediate successor of the
key.

 e.g., ID space {0,1,2,3,…,63}
 suppose 8 peers: 1,12,13,25,32,40,48,60

 If key = 51, then assigned to peer 60
 If key = 60, then assigned to peer 60
 If key = 61, then assigned to peer 1

2/10/2015 CSE 3214 - S.Datta 31

1

12

13

25

32
40

48

60

Circular DHT

• each peer only aware of
immediate successor and
predecessor.

“overlay network”

2/10/2015 CSE 3214 - S.Datta 32

1

12

13

25

32
40

48

60

What is the value
associated with key 53 ?

value

O(N) messages
on avgerage to resolve
query, when there
are N peers

Resolving a query

2/10/2015 CSE 3214 - S.Datta 33

Circular DHT with shortcuts

• each peer keeps track of IP addresses of predecessor, successor,
short cuts.

• reduced from 6 to 3 messages.
• possible to design shortcuts with O(log N) neighbors, O(log N)

messages in query

1

12

13

25

32
40

48

60

What is the value for
key 53

value

2/10/2015 CSE 3214 - S.Datta 34

Peer churn

example: peer 5 abruptly leaves

1

3

4

5

8
10

12

15

handling peer churn:
peers may come and go
(churn)
each peer knows address of
its two successors
each peer periodically pings
its
two successors to check
aliveness
if immediate successor
leaves, choose next successor
as new immediate successor

2/10/2015 CSE 3214 - S.Datta 35

Peer churn

example: peer 5 abruptly leaves
peer 4 detects peer 5’s departure; makes 8 its immediate
successor
 4 asks 8 who its immediate successor is; makes 8’s immediate
successor its second successor.

1

3

4

8
10

12

15

handling peer churn:
peers may come and go
(churn)
each peer knows address of
its two successors
each peer periodically pings
its
two successors to check
aliveness
if immediate successor
leaves, choose next successor
as new immediate successor

2/10/2015 CSE 3214 - S.Datta 36

Major problems

User issues
 Security
 Viruses

Community/Network issues
 Polluted files
 Flash crowds
 Freeloading

2/10/2015 CSE 3214 - S.Datta 37

Thought questions

 Is success due to massive number of servers or simply
because content is free?

 Copyright infringement issues: direct vs indirect.

2/10/2015 CSE 3214 - S.Datta 38

Next:

 A very brief description of socket programming

2/10/2015 CSE 3214 - S.Datta 39

Socket programming

Socket API
 introduced in BSD4.1 UNIX,

1981
 explicitly created, used,

released by apps
 client/server paradigm
 two types of transport

service via socket API:
 unreliable datagram
 reliable, byte stream-

oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

2/10/2015 CSE 3214 - S.Datta 40

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one process
to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

2/10/2015 CSE 3214 - S.Datta 41

Socket programming with TCP

Client must contact server
 server process must first be

running
 server must have created

socket (door) that welcomes
client’s contact

Client contacts server by:
 creating client-local TCP

socket
 specifying IP address, port

number of server process
 When client creates socket:

client TCP establishes
connection to server TCP

 When contacted by client,
server TCP creates new
socket for server process to
communicate with client
 allows server to talk with

multiple clients
 source port numbers used

to distinguish clients (more
in Chap 3)

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

2/10/2015 CSE 3214 - S.Datta 42

Stream jargon

 A stream is a sequence of characters that flow into or
out of a process.

 An input stream is attached to some input source for
the process, eg, keyboard or socket.

 An output stream is attached to an output source, eg,
monitor or socket.

2/10/2015 CSE 3214 - S.Datta 43

Socket programming with TCP

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

ou
tT

oS
er

ve
r

to network from network

in
Fr

om
Se

rv
er

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

2/10/2015 CSE 3214 - S.Datta 44

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

2/10/2015 CSE 3214 - S.Datta 45

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

2/10/2015 CSE 3214 - S.Datta 46

Example: Java client (TCP), cont.

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

2/10/2015 CSE 3214 - S.Datta 47

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

2/10/2015 CSE 3214 - S.Datta 48

Example: Java server (TCP), cont

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

2/10/2015 CSE 3214 - S.Datta 49

Chapter 2: Summary

 Application architectures
 client-server
 P2P
 hybrid

 application service
requirements:
 reliability, bandwidth, delay

 Internet transport service
model
 connection-oriented, reliable:

TCP
 unreliable, datagrams: UDP

Our study of network apps now complete!

 specific protocols:
 HTTP
 FTP
 SMTP, POP, IMAP
 DNS

2/10/2015 CSE 3214 - S.Datta 50

Chapter 2: Summary

 typical request/reply
message exchange:
 client requests info or

service
 server responds with data,

status code

 message formats:
 headers: fields giving info

about data
 data: info being

communicated

Most importantly: learned about protocols

 control vs. data msgs
 in-band, out-of-band

 centralized vs. decentralized
 stateless vs. stateful
 reliable vs. unreliable msg

transfer
 “complexity at network edge”

