Next

= The transport layer

2/24/2015 CSE 3214 - S.Datta

Chapter 3: Transport Layer

Our goals:
= understand principles = learn about transport layer
behind transport layer protocols in the Internet:
services: = UDP: connectionless
= multiplexing/demultiplexin transport _ _
g = TCP: connection-oriented
transport

= reliable data transfer
s flow control
= congestion control

= TCP congestion control

2/24/2015 CSE 3214 - S.Datta

Chapter 3 outline

3.1 Transport-layer = 3.5 Connection-oriented
transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management

= 3.6 Principles of
congestion control

= 3.7 TCP congestion
control

services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

2/24/2015 CSE 3214 - S.Datta

Transport services and protocols

= provide logical communication application

between app processes O B
running on different hosts Shysica nefwork
. oA ork physical
= transport protocols run in end ink
p @,
SyStemS > network
. < data link
= send side: breaks app I ohsical I network
messages into segments, > physical
passes to network layer 3 efw;;kk
= rcv side: reassembles |
segments into messages, application
passes to app layer network |
ata link |
= more than one transport physical

protocol available to apps
= Internet: TCP and UDP

2/24/2015 CSE 3214 - S.Datta 5

Transport vs. network layer

logical Household analogy:

communication between hosts _ _ '
logical 12 kids sending letters to 12

e kids
communication between .

Orocesses = processes = kids

= relies on, enhances, network = app messages = letters in
layer services envelopes

= hosts = houses

= transport protocol = Ann and
Bill

= network-layer protocol =
postal service

2/24/2015 CSE 3214 - S.Datta

Internet transport-layer protocols

reliable, in-order delivery (TCP) [apication

= congestion control networ -
data link network
= flow control physical data link
) oA ork physical
= connection setup ik
p @,
unreliable, unordered delivery: 3 network
data link
UDP > 3 physical ge:w?ri
ara lin
= no-frills extension of “best- o physical
2] twork
effort” IP 23 e w?i;k
. . ical
services not available:
= delay guarantees application
= bandwidth guarantees hetwor
physical |

2/24/2015 CSE 3214 - S.Datta 7

Chapter 3 outline

3.1 Transport-layer = 3.5 Connection-oriented
services transport: TCP

3.2 Multiplexing and = segment structure
demultiplexing = reliable data transfer

= flow control
= connection management

= 3.6 Principles of
congestion control

= 3.7 TCP congestion
control

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

2/24/2015 CSE 3214 - S.Datta

Multiplexing/demultiplexing

- Demul'l'iplexing at rcv host: — _ Mul’riplexing at send host: _

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
to correct socket

[1 =socket O = process

application 0 application @ application
L T L1 —

transport transport transport

hetwork network network

link link link

physical physical physical

2/24/2015 CSE 3214 - S.Datta 9

How demultiplexing works

= hostreceives IP datagrams

= each datagram has source IP « 32 bits

address, destination IP
address

= each datagram carries 1
transport-layer segment

= each segment has source,

destination port number
(recall: well-known port
numbers for specific
applications)

= host uses IP addresses & port
numbers to direct segment to

appropriate socket

2/24/2015

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

CSE 3214 - S.Datta

10

Connectionless demultiplexing

= Create sockets with port numbers:

DatagramSocket mySocketl = new
DatagramSocket (99111) ;
DatagramSocket mySocket?2 = new

DatagramSocket (99222) ;
= UDP socket identified by two-tuple:

(dest IP address, dest port number)

When host receives UDP
segment:

= checks destination port
number in segment

= directs UDP segment to
socket with that port number
|IP datagrams with
different source IP
addresses and/or source
port numbers directed to
same socket

2/24/2015 CSE 3214 - S.Datta 11

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6423);

A A

SP: 6428

DP: 9157

SP: 6428

DP: 5775

SP: 9157

DP: 6428

SP provides "return address”

2/24/2015

CSE 3214 - S.Datta

SP: 5775

DP: 6428

12

Connection-oriented demux

= TCP socket identified by 4- = Server host may support many
tuple: simultaneous TCP sockets:
m source |IP address = each socket identified by its
= source port number own 4-tuple
= dest IP address = \Web servers have different
= dest port number sockets for each connecting
= recv host uses all four values client
to direct segment to = non-persistent HTTP will have
appropriate socket different socket for each
request

2/24/2015 CSE 3214 - S.Datta 13

Connection-oriented demux (cont)

SP: 5775

DP: 80

S-IP. B

D-IP:C

SP: 9157

N

DP: 80

S-IP: A

D-IP:C

2/24/2015

CSE 3214 - S.Datta

SP: 9157

DP: 80

S-IP: B

D-IP:C

14

Connection-oriented demux: Threaded Web Server

2/24/2015

CSE 3214 - S.Datta

P4 % %
| i I L, M
SP: 5775
DP: 80
S-IP: B
D-IP:C
L
SP: 9157 SP: 9157
DP: 80 DP: 80
S-IP: A S-IP: B
D-IP:C D-IP:C

15

Chapter 3 outline

3.1 Transport-layer = 3.5 Connection-oriented
services transport: TCP
3.2 Multiplexing and = segment structure

= reliable data transfer
= flow control
= connection management

= 3.6 Principles of
congestion control

= 3.7 TCP congestion
control

demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

2/24/2015 CSE 3214 - S.Datta 16

UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones”

Internet transport protocol Why is there a UDP?

“best effort” service, UDP = no connection establishment

segments may be: (which can add delay)
= lost = Simple: no connection state
= delivered out of order to at sender, receiver
app = small segment header
connectionless: = no congestion control: UDP
= no handshaking between can blast away as fast as
UDP sender, receiver desired

= each UDP segment
handled independently of

others

2/24/2015 CSE 3214 - S.Datta

UDP: mo

often used for streaming

re

multimedia apps) 32 bits >
= |oss tolerant Length, in | Source port #| dest port #
= rate sensitive bytes of UDP [length checksum
segment
other UDP uses A ding
= DNS header
= SNMP
reliable transfer over UDP: Application
add reliability at application data
layer (message)
= application-specific error
recovery!

UDP segment format

2/24/2015 CSE 3214 - S.Datta

18

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Sender: Receiver:

= treat segment contents = compute checksum of received
as sequence of 16-bit segment
integers = check if computed checksum

= checksum: addition (1’s equals checksum field value:
complement sum) of = NO - error detected
segment contents = YES - no error detected.

But maybe errors

= sender puts checksum
nonetheless?

value into UDP
checksum field

2/24/2015 CSE 3214 - S.Datta 19

Internet Checksum Example

= Note

= When adding numbers, a carryout from the most significant
bit needs to be added to the result

= Example: add two 16-bit integers

11100110011 0O011
110101010101 0101

wraparound (1 01 1 1 01110111011

A\ 2

sum

10 0 0 0]
checksum 01 1 1 1

- O

111 111 1111
00O O 0O O0O00O

2/24/2015 CSE 3214 - S.Datta

20

Chapter 3 outline

3.1 Transport-layer = 3.5 Connection-oriented

Services transport: TCP
3.2 Multiplexing and = segment structure
demultiplexing = reliable data transfer
3.3 Connectionless = flow control
transport: UDP = connection management
3.4 Principles of reliable = 3.6 Principles of
data transfer congestion control

= 3.7 TCP congestion

control

2/24/2015 CSE 3214 - S.Datta 21

TCP: Overview

= point-to-point:
m one sender, one receiver

m reliable, in-order byte steam:

= NO “message boundaries”
= pipelined:

= [CP congestion and flow
control set window size

m Send & receive buffers

socket
door —

TCP
send buffer

receive buffer

() segment] —» ()

_ socket
door

RFCs: 793, 1122, 1323, 2018, 2581

full duplex data:

= bi-directional data flow in
same connection

= MSS: maximum segment
size
connection-oriented:

= handshaking (exchange of
control msgs) init’s sender,
receiver state before data
exchange

flow controlled:

= sender will not overwhelm
receiver

2/24/2015 CSE 3214 - S.Datta 22

TCP segment structure

A

URG: urgent data
(generally not used) ™

ACK: ACK #

32 bits >

source port #

dest port #

7

~

sequence number

/]

. \
valid

PSH: push data now
(generally not used)—

—acknowledgement number
head ':;L ZTDJgsF Receive window |

}h&d@m/

Urg data pnter

RST, SYN, FIN:— |
connection estab

/

Optighs (variable length)

(setup, teardown
commands)

InTerneT/////

checksum
(as in UDP)

/ application

data
(variable length)

2/24/2015

CSE 3214 - S.Datta

counting

by bytes

of data

(not segmentsl)

bytes
rcvr willing
to accept

23

TCP seq. #'s and ACKs

Seq. #'s:
Sa @ Host A Host B@

= byte stream “number”
of first byte in User S
segment’s data types » ACK=7g dat
. 'c »Hata = o
ACKs: host ACKs
= seq # of next byte . receipt of
expected from other (o3 4a@ = C ¢ echoes
: cYv= back 'C’
side o1 N ac
= cumulative ACK
Q: how receiver handles out- host ACKs
of-order segments receipt eg=43
= A: TCP spec doesn't of e'cc},‘oed ACKsgg
say, - up to
implementor
Time
simple telnet scenario

2/24/2015 CSE 3214 - S.Datta 24

TCP Round Trip Time and Timeout

Q: how to set TCP timeout Q: how to estimate RTT>?

value? 9 measured time from
= longerthan RTT segment transmission until ACK receipt
= but RTT varies = ignore retransmissions
= too short: premature timeout = SampleRTT will vary, want estimated
= Unnecessary RTT “smoother”
retransmissions = average several recent
= too long: slow reaction to measurements, not just current
segment loss SampleRTT

2/24/2015 CSE 3214 - S.Datta 25

TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + a*SampleRTT
= EXxponential weighted moving average

= influence of past sample decreases exponentially fast
= typical value: a =0.125

2/24/2015 CSE 3214 - S.Datta

26

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecomfr

350 -

300

RTT (millissconds)
N
[92]
o

N
(=]
o

150

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—e—SampleRTT —=—Estimated RTT |

2/24/2015 CSE 3214 - S.Datta 27

TCP Round Trip Time and Timeout

Setting the timeout

= EstimtedRTT plus “safety margin”
= large variation in EstimatedRTT -> larger safety margin

= first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT = (1-P)*DevRTT +
B*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval EstimatedRTT + 4*DevRTT

2/24/2015 CSE 3214 - S.Datta

28

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and

demultiplexing = 3.5 Connection-oriented
3.3 Connectionless transport: transport: TCP

UDP = segment structure

3.4 Principles of reliable data = reliable data transfer
transfer = flow control

= connection management

= 3.6 Principles of congestion
control

= 3.7 TCP congestion control

2/24/2015 CSE 3214 - S.Datta

29

TCP reliable data transfer

TCP creates rdt service on top = Retransmissions are triggered

of IP’s unreliable service by:

Pipelined segments = timeout events

Cumulative acks = duplicate acks

TCP uses single retransmission ™ Initially consider simplified TCP
timer sender:

= ignore duplicate acks

= ignore flow control, congestion
control

2/24/2015 CSE 3214 - S.Datta 30

TCP sender events:

data rcvd from app:

Create segment with seq #

seq # is byte-stream number
of first data byte in segment

start timer if not already
running (think of timer as for
oldest unacked segment)

expiration interval:
TimeOutInterval

timeout:

= retransmit segment that
caused timeout

s restart timer
Ack rcvd:

= |f acknowledges previously
unacked segments

update what is known to be
acked

start timer if there are
outstanding segments

2/24/2015 CSE 3214 - S.Datta 31

NextSegNum = InitialSegNum
SendBase = InitialSeqNum

switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y >= SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

2/247/2015 CSE 3214 -S.Datta

TCP

sender
(simplified)

Comment:

» SendBase-1: last
cumulatively
ack'ed byte
Example:

« SendBase-1=71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

32

@Hos‘r A

+«—timeout—

SendBase
=100

v

time

TCP: retransmission scenarios

Seg=g
B~ 2’ 8b
Jﬁesdbki
400
pok=®
X
loss
Seq=

9
2, 8 bytes data

lost ACK scenario

2/24/2015

Host B@

@Hos’r A

Sendbase
= 100
SendBase
=120

SendBase
=120

92 ‘rimeou‘r—>|

92 timeout —*+— Seq

eq-

')
3
v

time

CSE 3214 - S.Datta

Host B@

Seq=9
2,8lndesobk2

SGQ\
=10
0-20 byge data

premature timeout

33

TCP retransmission scenarios (more)

L

@ Host A Host B
Seq=92 b
Yites datg
4+ ;'\00
£ <0 bytes dat
= X
loss
SendBase R Sl

=120

v

v
time
Cumulative ACK scenario

2/24/2015 CSE 3214 - S.Datta

34

TCP ACK generation [RFC 1122, RFC 2581]

Event at Recelver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

2/24/2015

TCP Receiver action

Delayed ACK. Wait up to 500ms

for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

CSE 3214 - S.Datta 35

Fast Retransmit

= [ime-out period often relatively

long:
= long delay before resending = If sender receives 3 ACKs for
lost packet the same data, it supposes
= Detect lost segments via that segment after ACKed
duplicate ACKs. data was lost:
= Sender often sends many m fast retransmit: resend
segments back-to-back segment before timer expires

= |f segmentis lost, there will
likely be many duplicate ACKs.

2/24/2015 CSE 3214 - S.Datta 36

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y
}
/ \
a duplicate ACK for fast retransmit

already ACKed segment

2/24/2015 CSE 3214 - S.Datta

37

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and

demultiplexing = 3.5 Connection-oriented
3.3 Connectionless transport: transport: TCP

UDP = segment structure

3.4 Principles of reliable data = reliable data transfer
transfer = flow control

= connection management

= 3.6 Principles of congestion
control

= 3.7 TCP congestion control

2/24/2015 CSE 3214 - S.Datta

38

TCP Flow Control

m receive side of TCP connection

has a receive buffer: -flow COV\T""OI
sender won't overflow

receiver's buffer by
transmitting too much,
too fast

k— RevWindow —

= speed-matching service:
JPPLeiet matching the send rate to the
receiving app’s drain rate

data from
P spare room

b—— RevBuffer ————

= app process may be slow at
reading from buffer

2/24/2015 CSE 3214 - S.Datta 39

TCP Flow control: how it works

JF_ RevWindow —u|.

= Rcvr advertises spare room
data from : application by InC!Udlng _/alue Of
P Sp e soom — process RcvWindow in segments
s Sender limits unACKed data
to RevWindow

= guarantees receive buffer
doesn’t overflow

'P— RevBuffer —'* -
order segments)
= spare room in buffer

= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]

AN

2/24/2015 CSE 3214 - S.Datta 40

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and

demultiplexing = 3.5 Connection-oriented
3.3 Connectionless transport: transport: TCP

UDP = segment structure

3.4 Principles of reliable data = reliable data transfer
transfer = flow control

= connection management

= 3.6 Principles of congestion
control

= 3.7 TCP congestion control

2/24/2015 CSE 3214 - S.Datta

41

TCP Connection Management

Recall: TCP sender, receiver Three way handshake:

establish “connection”

before exchanging data Step 1: client host sends TCP SYN
segments segment to server
= initialize TCP variables: = specifies initial seq #
= Seq.#s = No data
= buffers, flow control info Step 2: server host receives SYN,
(€.9. ReviWindow) replies with SYNACK segment
= Client: connection initiator = server allocates buffers

Socket clientSocket = new . . g
Socket ("hostname" , "port = specifies server initial seq. #

number") ; Step 3: client receives SYNACK,
replies with ACK segment,

. t ' . :
= Server:contacted by client which may contain data

Socket connectionSocket =
welcomeSocket.accept() ;

2/24/2015 CSE 3214 - S.Datta 42

TCP Connection Management (cont.)

Closing a connection:

client closes socket:

@gkcﬁaﬂ

clientSocket.close() ;

close
Step 1: end system sends
TCP FIN control segment to
server
Step 2: receives FIN,
replies with ACK. Closes T
connection, sends FIN. g
O
Q
=
4
closed

2/24/2015

CSE 3214 - S.Datta

FIN

pCK
N

S@FVCP@

close

43

TCP Connection Management (cont.)

Step 3: receives FIN,
replies with ACK.

. . . client server@
s Enters “timed wait” - will @

respond with ACK to closing
received FINs FIN
Step 4: , receives ACK. SOk
Connection closed. closing
F\N
Note: with small modification, _
can handle simultaneous FINs. +§ ACK
bs closed
£
+—
closed

2/24/2015 CSE 3214 - S.Datta 44

TCP Connection Management (cont)

CLOSED

wait 30 seconds

(

TIME_WAIT
A&

receive FIN
send ACK

FIN_WAIT_2

receive ACK

client application
initiates a TCP connection

send SYN

SYN_SENT

receive SYN & ACK
send ACK

h 4

ESTABLISHED

send nothing FIN_WAIT_1

TCP client
lifecycle

2/24/2015

client application
initiates close connection

send FIN CLOSED

receive ACK
send nothing

LAST_ACK
A

send FIN

CLOSE_WAIT

TCP server
lifecycle

server application

creates a listen socket

LISTEN

receive SYN
send SYN & ACK

h 4

SYN_RCVD

receive FIN

send ACK ESTABLISHED

CSE 3214 - S.Datta

receive ACK
send nothing

45

