Graphs — ADTs and Implementations

EECS 2011
UYQBSIS ' Prof. J. Elder -1- Last Updated: 6 April 2015

UUUUUUUUUU

Applications of Graphs

» Electronic circuits
O Printed circuit board
U Integrated circuit

» Transportation networks
O Highway network
O Flight network

» Computer networks
4 Local area network
O Internet
d Web

» Databases

U Entity-relationship diagram

YORK ' EECS 2011
UNIVERSITE

Prof. J. Elder

UUUUUUUUUU

’ E 000000
att.net

s

Last Updated: 6 April 2015

Outcomes

» By understanding this lecture, you should be able to:
1 Define basic terminology of graphs.
L Use a graph ADT for appropriate applications.
O Program standard implementations of the graph ADT.

O Understand advantages and disadvantages of these
implementations, in terms of space and run time.

YORK EECS 2011 a _ ,
EEEEEEEEEE ' Prof. J. Elder 3 Last Updated: 6 April 2015

IIIIIIIIII

» Definitions
» Graph ADT

» Implementations

YORK ' EECS 2011

“““““““““ Prof. J. Elder

IIIIIIIIII

Outline

Last Updated: 6 April 2015

» Definitions
» Graph ADT

» Implementations

YORK ' EECS 2011

““““““““ : Prof. J. Elder

IIIIIIIIII

Outline

Last Updated: 6 April 2015

Edge Types

» Directed edge
U ordered pair of vertices (u,v)
U first vertex u is the origin
[second vertex v is the destination flight

AA 1206
U e.g., aflight >

» Undirected edge

U unordered pair of vertices (u,v) 849

d e.g., aflight route @ miles @

» Directed graph (Digraph)

U all the edges are directed
U e.g., route network
» Undirected graph
O all the edges are undirected

O e.g., flight network

EECS 2011
UYQRSK ' Prof. J. Elder -6- Last Updated: 6 April 2015

IIIIIIIIII

Vertices and Edges

» End vertices (or endpoints) of
an edge

O U and V are the endpoints of a
» Edges incident on a vertex
U a, d, and b are incident on V

» Adjacent vertices
O U and V are adjacent

» Degree of a vertex
U X has degree 5

» Parallel edges

U h and i are parallel edges
> Self-loop

O jis a self-loop

YORK EECS 2011 o) .
......... : ' Prof. J. Elder 7 Last Updated: 6 April 2015

IIIIIIIIII

Graphs

» A graphis a pair (V, E), where
1 Vs a set of nodes, called vertices
O E is a collection of pairs of vertices, called edges
[Vertices and edges are positions and store elements
» Example:
O A vertex represents an airport and stores the three-letter airport code

O An edge represents a flight route between two airports and stores the
mileage of the route

1843

EECS 2011
UYQBSK ' Prof. J. Elder -8- Last Updated: 6 April 2015

IIIIIIIIII

Paths

> Path

O sequence of alternating
vertices and edges

U begins with a vertex
U ends with a vertex

U each edge is preceded and
followed by its endpoints

» Simple path

O path such that all its vertices
and edges are distinct

» Examples
0 P,=(V,b,X,h,2) is a simple path

a P,=(U,c,W,e,X,g,Y,fW.,d,V) is a
path that is not simple

EECS 2011
UYQBSK ' Prof. J. Elder -9- Last Updated: 6 April 2015

IIIIIIIIII

Cycles

» Cycle

O circular sequence of alternating
vertices and edges

U each edge is preceded and
followed by its endpoints

» Simple cycle

U cycle such that all its vertices
and edges are distinct

» Examples

4d C,=(V,b,X,g,Y.,f,W,c,U,a,V)is a
simple cycle

g C,=(U,c,W,e,X,g,Y,fW.d,V,a,U)
IS a cycle that is not simple

EECS 2011
UYQBSK ' Prof. J. Elder -10 - Last Updated: 6 April 2015

IIIIIIIIII

Subgraphs

» A subgraph S of a graph
G is a graph such that

(1 The vertices of S are a
subset of the vertices of G

O The edges of S are a
subset of the edges of G

» A spanning subgraph of
G is a subgraph that
contains all the vertices of
G

YORK ' EECS 2011 19 -

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder

Spanning subgraph

Last Updated: 6 April 2015

Connectivity

» A graph is connected if
there is a path between
every pair of vertices

» A connected component
of a graph G is a maximal
connected subgraph of G

YORK ' EECS 2011 .

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

Connected graph

O

Non connected graph with two
connected components

Last Updated: 6 April 2015

Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

EECS 2011
UYQBSIS ' Prof. J. Elder -13 - Last Updated: 6 April 2015

UUUUUUUUUU

Spanning Trees

» A spanning tree of a connected
graph is a spanning subgraph that
is a tree

» A spanning tree is not unique
unless the graph is a tree

» Spanning trees have applications
to the design of communication
networks Graph

» A spanning forest of a graph is a
spanning subgraph that is a forest

Spanning tree

YORK EECS 2011 a4) .
.......... ' Prof. J. Elder 14 Last Updated: 6 April 2015

IIIIIIIIII

Reachability in Directed Graphs
» A node w is reachable from v if there is a directed path
originating at v and terminating at w.
U E is reachable from B

[B is not reachable from E

YORK EECS 2011 e _ ,
EEEEEEEEEE ' Prof. J. Elder 15 Last Updated: 6 April 2015

IIIIIIIIII

Properties

Property 1 Notation
Y. deg(v) =2|E| V] number of vertices
Proof: each edge is counted [E| number of edges
twice deg(v) degree of vertex v
Property 2
In an undirected graph with no Example
self-loops and no multiple . |V]=4
edges
x |E|=6
[EI <[V (V- 1D)/2 a deg(v)=3

Proof. each vertex has degree
at most (|V] - 1)

Q: What is the bound for a digraph?
A: |E|<|V|(V|-1)

YORK EECS 2011 Caa _ ,
EEEEEEEEEE ' Prof. J. Elder 16 Last Updated: 6 April 2015

IIIIIIIIII

» Definitions
» Graph ADT

» Implementations

YORK ' EECS 2011

““““““““ : Prof. J. Elder

IIIIIIIIII

Outline

-17 -

Last Updated: 6 April 2015

Main Methods of the Graph ADT

» Accessor methods
dnumVertices(): Returns the number of vertices in the graph
dnumEdges(): Returns the number of vertices in the graph
dgetEdge(u, v): Returns edge from u to v
dendVertices(e): an array of the two endvertices of e
Jdopposite(v, e): the vertex opposite to von e
doutDegree(v): Returns number of outgoing edges

dinDegree(v): Returns number of incoming edges

YORK EECS 2011 e _ ,
EEEEEEEEEE ' Prof. J. Elder 18 Last Updated: 6 April 2015

IIIIIIIIII

Main Methods of the Graph ADT
» Update methods

dinsertVertex(x): insert a vertex storing element x
dinsertEdge(u, v, x): insert an edge (u,v) storing element x
dremoveVertex(v): remove vertex v (and its incident edges)

dremoveEdge(e): remove edge e

YORK EECS 2011 e _ ,
EEEEEEEEEE ' Prof. J. Elder 19 Last Updated: 6 April 2015

IIIIIIIIII

Main Methods of the Graph ADT

> |lterator methods
dincomingEdges(v): Incoming edges to v
doutgoingEdges(v): Outgoing edges from v
dvertices(): all vertices in the graph

dedges(): all edges in the graph

YORK EECS 2011 o _ ,
EEEEEEEEEE ' Prof. J. Elder 20 Last Updated: 6 April 2015

IIIIIIIIII

» Definitions
» Graph ADT

» Implementations

YORK ' EECS 2011

““““““““ = Prof. J. Elder

IIIIIIIIII

Outline

-21-

Last Updated: 6 April 2015

GTG Implementation (net.datastructures)

» There are many ways to implement the Graph ADT.

» We will follow the textbook implementation.

YORK EECS 2011 oo) .
.......... ' Prof. J. Elder 22 Last Updated: 6 April 2015

IIIIIIIIII

Vertex and Edge Lists

» A graph consists of a collection of vertices V and a collection of edges E.
» Each of these will be represented as a Positional List (Ch.7.3).

» |In net.datastructures, Positional Lists are implemented as doubly-linked
lists.

~N—_— = —_—— e — — — = —_—— e — — — — —_—— e —— e — —_— — =

——— —_———————————

e e s e e e e e e e e e e S e s S s S S e e S e S e e S e S e e S S e e e e e e e e e e

(.

S — S g g S S S g S S S S S S S PR ——e——

()
| e f g h i

\

YORK ' TTEECS20TT T T T T T T T T T Tttt TTTTTTTTTTTTTT

EEEEEEEEEE Prof. J. Elder -23 - Last Updated: 6 April 2015

IIIIIIIIII

Vertices and Edges

» Each vertex v stores an element containing information about the vertex.

O For example, if the graph represents course dependencies, the vertex element might
store the course number.

» Each edge e stores an element containing information about the edge.
O e.qg., pre-requisite, co-requisite.

» In addition, each edge must store references to the vertices it
connects.

Vertex u m\
Vertices e | Edge Edge e

Vertex v

YORK ' EECS 2011 o

““““““““ : Prof. J. Elder

IIIIIIIIII

Last Updated: 6 April 2015

Vertices and Edges

» To facilitate efficient removal of vertices and edges, we will make both
location aware:

1 A reference to the Position in the Positional List will be stored in the element.

—_—_———e—ee e —— —

Edge Position / Node

/ [
| | | |
l prev next : l prev next :
|
i < | <
| | | |
| | ' |
' | ' |
\ / : /
SN v N v
Vertex @ Edge e
EECS 2011
YO RK ' -25- Last Updated: 6 April 2015

||||||||| E
UUUUUUUUUU

Prof. J. Elder

Edge List Implementation

» This organization yields an Edge List Structure

<
®)m

T [Vertex List R

u

w ‘|z
EECS 2011
UYQBSI& ' Prof. J. Elder - 26 - Last Updated: 6 April 2015

IIIIIIIIII

=)
@

o——»@«— g |« ° l

o—

(e
(

Edge List

Performance of Edge List Implementation

» Edge List implementation does not provide efficient access to edge
information from vertex list.

= n vertices, m edges

= no parallel edges Edge
= no self-loops List
Space n+m
incomingEdges(v)
outgoingEdges(v) "
getEdge(u, v) m
insertVertex(x) 1
insertEdge(u, v, x) 1
removeVertex(v) m
removeEdge(e) 1

YORK EECS 2011 o7) .
.......... ' Prof. J. Elder 27 Last Updated: 6 April 2015

IIIIIIIIII

Other Graph Implementations

» Can we come up with a graph implementation that
improves the efficiency of these basic operations?

 Adjacency List
1 Adjacency Map
[Adjacency Matrix

YORK EECS 2011 Con _ ,
EEEEEEEEEE ' Prof. J. Elder 28 Last Updated: 6 April 2015

IIIIIIIIII

Other Graph Implementations

» Can we come up with a graph implementation that
improves the efficiency of these basic operations?

1 Adjacency List
1 Adjacency Map
[Adjacency Matrix

YORK EECS 2011 o0 . _ ,
EEEEEEEEEE ' Prof. J. Elder 29 Last Updated: 6 April 2015

IIIIIIIIII

Adjacency List Implementation

» An Adjacency List implementation augments each vertex element with
Positional Lists of incoming and outgoing edges.

Vertex List Adjacency Lists

v

)

o —w—(c g

@

YORK EECS 2011 an _ ,
,,,,,,,,,, ' Prof. J. Elder 30 Last Updated: 6 April 2015

IIIIIIIIII

&

Adjacency List Implementation

» An Adjacency List implementation augments each vertex element with
lists of incoming and outgoing edges.

o o
Vertex List CR R R

714 u rlelv 11w

G—©@ \©®
(o) e
Edge List

EECS 2011
UYQBSIg ' Prof. J. Elder -31- Last Updated: 6 April 2015

UUUUUUUUUU

Adjacency Lists °

Performance of Adjacency List Implementation

» Adjacency List implementation improves efficiency
without increasing space requirements.

= n vertices, m edges

= no parallel edges EC_Ige Adjaf:ency

= no self-loops List List

Space n+m n+m
incomingEdges(v)

outgoingEdges(») " deg(v)
getEdge(u, v) m min(deg(u), deg(v))
insertVertex(x) 1 1
insertEdge(u, v, x) 1 1
removeVertex(v) m deg(v)
removeEdge(e) 1 1

YORK ' EECS 2011

””””””””” Prof. J. Elder

IIIIIIIIII

-32-

Last Updated: 6 April 2015

Other Graph Implementations

» Can we come up with a graph implementation that
improves the efficiency of these basic operations?

 Adjacency List
1 Adjacency Map
[Adjacency Matrix

YORK EECS 2011 Can _ ,
,,,,,,,,,, ' Prof. J. Elder 33 Last Updated: 6 April 2015

IIIIIIIIII

Adjacency Map Implementation

» An Adjacency Map implementation augments each vertex element with
an Adjacency Map of edges

O Each entry consists of:

& Key = opposite vertex Vertex List Adjacency Maps
< Value = edge V
(o) CTITERITT RN
O Implemented as a hash table. vV w
WVt
e g
u w
g g —e(D)—{ § ¥
()
N
VW T
N —
ket o
W
o D— ¥
h
-/
YORK ' =ECS 2011 -34 - Last Updated: 6 April 2015

UUUUUUU £
vvvvvvvvvv

Prof. J. Elder

Performance of Adjacency Map Implementation

» Adjacency Map implementation improves expected run
time of getEdge(u,v):

= n vertices, m edges
" no parallel edges Edge Adjacency Adjacency
- o SgiRleRE List List Map
Space n+m n+m n+m
incomingEdges(v),
outgoinéjJ Edges((v)) " deg(v) deg(v)
getEdge(u, v) m min(deg(u), deg(v)) 1 (exp.)
insertVertex(x) 1 1 1
insertEdge(u, v, x) 1 1 1 (exp.)
removeVertex(v) m deg(v) deg(v)
removeEdge(e) 1 1 1 (exp.)
YORK § EEcs -35- Last Updated: 6 April 2015

Prof. J. Elder

IIIIIIIIII

Other Graph Implementations

» Can we come up with a graph implementation that
improves the efficiency of these basic operations?

 Adjacency List
1 Adjacency Map
 Adjacency Matrix

YORK EECS 2011 Can _ ,
,,,,,,,,,, ' Prof. J. Elder 36 Last Updated: 6 April 2015

IIIIIIIIII

Adjacency Matrix Implementation

» In an Adjacency Matrix implementation we map each of the n vertices to
an integer index from [0...n-1].
» Then a 2D n x n array A is maintained:

O If edge (i, j) exists, A[i, j] stores a reference to the edge.

O If edge (i, j) does not exist, A[i, j] is set to null.

Vertex List Adjacency Matrix
01 2 3
u — 0 el g
vy — 1 |e
e 8)
w — 2 g f h
VW) ;e 3 7
YORK ' =ECS 2011 - 37 - Last Updated: 6 April 2015

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder

Adjacency Matrix Structure

o o
o

EECS 2011
XQBSI& ' Prof. J. Elder -38 - Last Updated: 6 April 2015

IIIIIIIIII

Q

Performance of Adjacency Matrix Implementation

» Requires more space.

» Slow to get incoming / outgoing edges

» Very slow to insert or remove a vertex (array must be resized)

= n vertices, m edges

" no parallel edges Edge Adjacency Adjacency | Adjacency
- e it List List Map Matrix
Space n+m n+m n+m n?
incomingEdges(v),
outgoinSEdges((v)) " deg(v) deg(v) "
getEdge(u, v) m min(deg(u), deg(v)) 1 (exp.) 1
insertVertex(x) 1 1 1 n?
insertEdge(u, v, x) 1 1 1 (exp.) 1
removeVertex(v) m deg(v) deg(v) n?
removeEdge(e) 1 1 1 (exp.) 1
YORK § EEcs -39 - Last Updated: 6 April 2015

Prof. J. Elder

IIIIIIIIII

A4Q2: Course Prerequisites

» In most post-secondary programs, courses have
prerequisites.

» For example, you cannot take EECS 3101 until you have
passed EECS 2011.

» How can we represent such a system of dependencies?

» A natural choice is a directed graph.

L Each vertex represents a course

L Each directed edge represents a prerequisite

<> A directed edge from Course U to Course V means that Course U

must be taken before Course V.

EECS 2011
YORKRE} - 40 - Last Updated: 6 April 2015

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder

A4Q2: Course Prerequisites

» We also want to be able to find the information for a
particular course quickly.

» The course number provides a convenient key that can
be used to organize course records in a sorted map,
implemented as a binary search tree (cf. A3Q1).

» Thus it makes sense to represent courses using both a
sorted map (for efficient access) and a directed graph (to
represent dependencies).

» By storing a reference to the directed graph vertex for a
course in the sorted map, we can efficiently access
course dependencies.

YORK EECS 2011 a1) .
.......... ' Prof. J. Elder 41 Last Updated: 6 April 2015

IIIIIIIIII

A4Q2: Course Prerequisites

Key: 2011

Value:

* Number: 2011

« Name: “Data Structures”
. Vertex:o\

Sorted Map
(K3,V3)

Directed Graph

EECS 2011
UYQBSK ' Prof. J. Elder -42 - Last Updated: 6 April 2015

IIIIIIIIII

A4Q2: Course Prerequisites

» It is important that the course prerequisite graph be a
directed acyclic graph (DAG). Why?

EECS 2011
UYQBSIi ' Prof. J. Elder -43 - Last Updated: 6 April 2015

UUUUUUUUUU

A4Q2: Course Prerequisites

» In this question, you are provided with a basic
implementation of a system to represent courses and
dependencies.

» Methods for adding courses and getting prerequisites
are provided.

» You need only write the method for adding a
prerequisite.

» This method will use a depth-first-search algorithm (also
provided) that can be used to prevent the addition of
prerequisites that introduce cycles.

YORK EECS 2011 s) .
.......... ' Prof. J. Elder 44 Last Updated: 6 April 2015

IIIIIIIIII

A4Q2: Implementation using net.datastructures

» We use the TreeMap class

Key: 2011

to represent the sorted map Value:
* Number: 2011

(Cf' A3Q1) Name: “Data Structures”
« \Vertex:

Map |
/\

’ AbstractMap | ’ SortedMap |
Sorted Map
AbstractSortedMap | (Ks,Vs)
T ’ Entry
} TreeMap |
! MapEntryI

YORK EECS 2011 e _ ,
EEEEEEEEEE ' Prof. J. Elder 45 Last Updated: 6 April 2015

IIIIIIIIII

A4Q2: Implementation using net.datastructures

» We use the AdjacencyMapGraph class to represent the directed graph.

» This implementation uses ProbeHashMap, a linear probe hash table, to
represent the incoming and outgoing edges for each vertex.

Map|

Directed Graph

’ Graph | ’ Abstr?‘ctMap |
AbstractHashMap |
! AdjacencyMapGraph | T
! ProbeHashMapI
UYQRSK ' SECS 20T -46 - Last Updated: 6 April 2015

Prof. J. Elder

IIIIIIIIII

» Definitions
» Graph ADT

» Implementations

YORK ' EECS 2011

“““““““““ Prof. J. Elder

IIIIIIIIII

Outline

-47 -

Last Updated: 6 April 2015

Outcomes

» By understanding this lecture, you should be able to:
1 Define basic terminology of graphs.
L Use a graph ADT for appropriate applications.
O Program standard implementations of the graph ADT.

O Understand advantages and disadvantages of these
implementations, in terms of space and run time.

YORK EECS 2011 e _ ,
EEEEEEEEEE ' Prof. J. Elder 48 Last Updated: 6 April 2015

IIIIIIIIII

