Name:(Last name)	(First name)
Student ID#:	
Registered Section:	
Instructor: John Lam	

York University

Department of Electrical Engineering & Computer Science Lassonde School of Engineering

EECS 1520.03 COMPUTER USE: Fundamentals Test 1 (Solutions) February 11, 2015

Instructions:

- This is an in class examination, therefore examination rules are in effect.
- Fill in the box at the top of this page, and print your Student ID# at the top of each other page.
- Answer ALL questions:
- Time allowed is 60 minutes.
- Use of calculators is **NOT** permitted.
- ✤ There are 8 pages including this cover. Please count them.

Part	Value	Mark
Α	15	
В	35	

Total: 50

Part A [15 points]

- 1. In the 19th century, the analytical engine is designed by [1]
 - Joseph Jacquard a)
 - b) Blaise Pascal
 - c) **Charles Babbage**
 - d) Alan Turing
 - Gottfried Wilhelm von Leibniz e)
- [1] 2. This person is recognized as the first programmer in history.
 - Charles Babbage a)
 - b) Ada LoveLace
 - c) John von Neumann
 - d) Blaise Pascal
 - **Thomas Watson** e)
- [1] 3. What is the largest digit in the Base-6 system?
 - a) 2
 - b) 3
 - c) 4
 - 5 d)
 - e) 6
- 4. Directory tree is a structure showing the nested directory organization of the file [1] system inside a computer. The directory at the highest level is called _____
 - working directory a)
 - b) bottom directory
 - common directory c)
 - sub directory d)
 - root directory e)
- [1] 5. In general, the process of converting analog data to digital data is called
 - a) encoding
 - b) digitizing
 - c) decoding
 - d) sampling
 - none of the above e)

EECS 1520

- [1] 6. Which of the following characterizes the second generation (1959-1965) of computer hardware?
 - a) transistors
 - b) vacuum tubes
 - c) integrated circuits
 - d) silicon chips
 - e) magnetic drum
- [1] 7. The 5-bit <u>unsigned</u> binary representation of the decimal number 29 is
 - 11100 a)
 - b) 11110
 - c) 11101
 - d) 11110
 - e) 11011
- [1] 8. The number of bit combinations of a 6-bit data is
 - a) 6
 - b) 12
 - c) 32
 - d) 64
 - e) 128

[1] 9. The decimal representation of the unsigned binary number 10111.001 is

- a) 21.125
- b) 21.075
- c) 23.125
- d) 24.375
- 25.375 e)
- 10. The octal representation of the decimal number 16 is [1]
 - a) 2
 - b) 8
 - c) 16
 - d) 20
 - e) 32
- [1] 11. In Excel, the cell C8 contains the formula = B3. This formula is copied from cell C8 and pasted into cell E9. What will the formula look like in cell E9?
 - =C3a)
 - b) =D4
 - c) =E5
 - =F6 d) e) =G7

Page 3 of 8

- [1] 12. The hexadecimal representation of the unsigned binary number 001001111100 is
 - a) 14B b) 15B
 - c) 16C
 - d) 27C
 - 28D e)
- _ describes an image in terms of lines and geometric shapes. [1] 13. _
 - a) Huffman encoding
 - b) Temporal compression
 - c) Spatial compression
 - Vector graphics d)
 - e) **Raster graphics**
- [1] 14. What is the amount of memory required to store a character called?
 - a) bit
 - b) file
 - c) byte
 - d) folder
 - e) register
- [1] 15. The <u>unsigned</u> 8-bit binary representation of the octal number 67 is:
 - a) 01011011
 - b) 00110111
 - c) 00011111
 - d) 00110110
 - e) 01011110

Part B [35 points]

[4] 1. Give the 10-bit 2's complement representation of the decimal number -73. Show all your steps.

		<u>quotient</u>	<u>reminder</u>	
ANS:	73/2	36	1	
	36/2	18	0	
	18/2	9	0	
	9/2	4	1	[2]
	4/2	2	0	
	2/2	1	0	
	1/2	0	1	

10-bit representation of 73 is: 0001001001 Hence, -73 is:

1110110110 + 1 = **1110110111**

(** 1 point for inverting all the bits, 1 point for adding 1 at the end)

[8] 2. Show how the following decimal number subtraction and addition are performed using 8-bit 2's complement representation in a computer. Show all your steps.

-22 + 5 - 9

ANS:	22 in 8-bit representation is: 0001 0110	
	So -22 in 2's complement is: 1110 1010	[2]

	1110 1010	
+	0000 0101	[2]
	1110 1111	

(** 1 point for obtaining the 8 bit representation for +5, 1 point for proper arithmetic)

	1110 1111	
+	<u>1111 0111</u>	[4]
	1 1110 0110	

Final answer is: 1110 0110

(** 2 points for obtaining the 8 bit representation for -9, 2 points for proper arithmetic) Page **5** of **8**

CCCCDDDYYYYZZZZAA333

ANS: *C4DDD*Y4*Z4AA333

(** if student gets part of this correct, please give part marks)

[2] 4. What compression ratio is achieved in 3? (you can leave the answer in fraction)

ANS: 17/20 = 0.85

[2] 5. Use the following Huffman alphabet to decode the string. e = 00 c = 1101 o = 0110 p = 10 s = 111

00001101111

ANS: eecs

[4] 6. Consider the following formula. Assuming a, b, c, d, L, M are all named ranges, write an <u>Excel expression</u> for this mathematical formula.

$$\frac{M^{\frac{1}{b-c}}}{a}\left(L^2 - \frac{acd}{M^{\frac{1}{b}}}\right)$$

ANS: M^(1/(b-c))/a*(L^2-a*c*d/M^(1/b))

(**deduct 0.5 point for each wrong operator or wrong brackets**)

Page **6** of **8**

[4] 7. Perform the following hexadecimal number subtraction and addition.

ANS:

$$(A5 - 1C)_{16} = (89)_{16}$$
 [2]

$$(89 + 4)_{16} = 8D$$

(**if student did the first part wrong but the arithmetic for the second part right, deduct 1 point**)

[2]

[2] 8. Perform the following <u>unsigned</u> binary number subtraction:

ANS:

(**deduct 1 point if student did part of the arithmetic wrong**)

[3] 9. Determine the hexadecimal representation of the octal number:

4321

ANS:	4 3 2 1 <- Octal	
	100 011 010 001 \leftarrow Binary in groups of 3 bits	[1]
	1000 1101 0001 \leftarrow Binary in groups of 4 bits	[1]
	8 D 1 ← Hexadecimal	[1]

Page **7** of **8**

Given the following Excel worksheet, answer the following three questions.

					A		В	С	D	E	F	G
							Unit					
				1	Item		Price	Quantity	y Cost	PST	GST	Total
_	A	В	C	2	Shirt	\$	15.50	20	\$ 310.00	\$ 24.80	\$ 15.50	\$350.30
1	Taxation	Rates		3	Hat	\$	9.99	12	\$ 119.88	\$ 9.59	\$ 5.99	\$135.46
2				4	Shoe	\$	35.50	8	\$ 284.00	\$ 22.72	\$ 14.20	\$320.92
3	PST_Rate	8%		5	Dress	\$	28.50	14	\$ 399.00	\$ 31.92	\$ 19.95	\$450.87
4	GST_Rate	5%		6	Pants	\$	32.50	19	\$ 617.50	\$ 49.40	\$ 30.88	\$697.78
5		070		7								
6				8								
-	Comments	Tax_Rates Sales_S	ummary (+)		> (Com	ments 1	Tax_Rates	Sales_Summary	\oplus		: 4

Unit Price, Quantity are given data; Cost, PST, GST and Total are calculated using named ranges. The cell Tax_Rates!\$B\$3 is defined as PST_Rate using named range.

[1] 10. Based on the given information, assume that we are in "formula view", write down the formula that you would see in cell D4 in the **Sales_Summary** worksheet.

ANS: =Unit_Price*Quantity

[2] 11. Write down a formula that you would enter to calculate the **PST** in the **Sales_Summary** worksheet.

ANS: =Cost*PST_Rate

- [1] 12. A formula: =SUM(Quantity) is entered in cell C8, what is the actual value in cell C8?
 - ANS: sum of the range of cells: C2 to C6

So the answer is 20 + 12 + 8 + 14 + 19 = 73