
Chapter 5: Aggregation and Composition
EECS 1030

moodle.yorku.ca

moodle.yorku.ca EECS 1030

moodle.yorku.ca
moodle.yorku.ca


Aggregation

Definition

Aggregation is a binary relation on classes. The pair (A, P) of
classes is in the aggregation relation if class A (aggregate) has a
non-static attribute of type P (part).

The aggregation relation is also known as the has-a relation.
Instead of saying that (A, P) is in the aggregation relation, we
often simply say that A has-a P.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Aggregation

Definition

Aggregation is a binary relation on classes. The pair (A, P) of
classes is in the aggregation relation if class A (aggregate) has a
non-static attribute of type P (part).

The aggregation relation is also known as the has-a relation.
Instead of saying that (A, P) is in the aggregation relation, we
often simply say that A has-a P.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Aggregation

Examples

A Stock has-a String

An Investment has-a Stock

moodle.yorku.ca EECS 1030

moodle.yorku.ca


UML Diagrams

type::lib::Stock java::lang::String

moodle.yorku.ca EECS 1030

moodle.yorku.ca


UML Diagrams

Stock String

moodle.yorku.ca EECS 1030

moodle.yorku.ca


UML Diagrams

Stock String
1

moodle.yorku.ca EECS 1030

moodle.yorku.ca


UML Diagrams

Investment Stock String
1 1

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Aggregation

Problem

Implement this API.

moodle.yorku.ca EECS 1030

http://www.eecs.yorku.ca/teaching/docs/type-api/type/lib/Investment.html
moodle.yorku.ca


Attributes

Question

Besides the constructors, which methods in the API give us a good
indication which attributes to introduce?

Answer

The accessors getBookValue, getQty and getStock.

Answer

Which attributes (name and type) should we introduce?

Answer

private double bookValue;
private int qty; // cryptic name
private Stock stock;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Attributes

Question

Besides the constructors, which methods in the API give us a good
indication which attributes to introduce?

Answer

The accessors getBookValue, getQty and getStock.

Answer

Which attributes (name and type) should we introduce?

Answer

private double bookValue;
private int qty; // cryptic name
private Stock stock;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Attributes

Question

Besides the constructors, which methods in the API give us a good
indication which attributes to introduce?

Answer

The accessors getBookValue, getQty and getStock.

Answer

Which attributes (name and type) should we introduce?

Answer

private double bookValue;
private int qty; // cryptic name
private Stock stock;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Attributes

Question

Besides the constructors, which methods in the API give us a good
indication which attributes to introduce?

Answer

The accessors getBookValue, getQty and getStock.

Answer

Which attributes (name and type) should we introduce?

Answer

private double bookValue;
private int qty; // cryptic name
private Stock stock;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors, accessors and mutators

Problem

Using eclipse, generate a constructor, and the accessors and
mutators.

Questions

Which accessors or mutators should be made private?

Answer

setStock

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors, accessors and mutators

Problem

Using eclipse, generate a constructor, and the accessors and
mutators.

Questions

Which accessors or mutators should be made private?

Answer

setStock

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors, accessors and mutators

Problem

Using eclipse, generate a constructor, and the accessors and
mutators.

Questions

Which accessors or mutators should be made private?

Answer

setStock

moodle.yorku.ca EECS 1030

moodle.yorku.ca


The equals method

Problem

Implement the equals method.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Memory diagram

Stock stock = new Stock("HR.A");
int quantity = 3;
double bookValue = 2.35;
Investment investment =

new Investment(stock, quantity, bookValue);
stock.setSymbol("HR.B");

Problem

Draw the memory diagram representing memory at the end of
line 4.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Memory diagram

Stock stock = new Stock("HR.A");
int quantity = 3;
double bookValue = 2.35;
Investment investment =

new Investment(stock, quantity, bookValue);
stock.setSymbol("HR.B");

Problem

Draw the memory diagram representing memory at the end of
line 5.

Note

The client can directly modify (any part of) the Investment
object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Memory diagram

Stock stock = new Stock("HR.A");
int quantity = 3;
double bookValue = 2.35;
Investment investment =

new Investment(stock, quantity, bookValue);
stock.setSymbol("HR.B");

Problem

Draw the memory diagram representing memory at the end of
line 5.

Note

The client can directly modify (any part of) the Investment
object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Composition

Composition is a special type of aggregation. The aggregate A and
its part P form a composition if “A owns P”, that is, each object
of type A has exclusive access to its attribute of type P.

The designer and the implementer of a class determine whether an
aggregation is a composition.

Java does not provide any special language constructs for
implementing compositions. The constructors, accessors and
mutators are implemented in a particular way.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


UML Diagrams

DateCreditCard
2

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Composition

Problem

Implement this API.

moodle.yorku.ca EECS 1030

http://www.eecs.yorku.ca/teaching/docs/type-api/type/lib/CreditCard.html
moodle.yorku.ca


Attributes

Question

Besides the constructors, which methods in the API give us a good
indication which attributes to introduce?

Answer

The accessors getBalance, getExpiryDate, getIssueDate,
getLimit, getName and getNumber.

Answer

Which attributes (name and type) should we introduce?

Answer

private double balance;
private Date expiryDate;
private Date issueDate;
private double limit;
private int number;
private String name;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Attributes

Question

Besides the constructors, which methods in the API give us a good
indication which attributes to introduce?

Answer

The accessors getBalance, getExpiryDate, getIssueDate,
getLimit, getName and getNumber.

Answer

Which attributes (name and type) should we introduce?

Answer

private double balance;
private Date expiryDate;
private Date issueDate;
private double limit;
private int number;
private String name;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Attributes

Question

Besides the constructors, which methods in the API give us a good
indication which attributes to introduce?

Answer

The accessors getBalance, getExpiryDate, getIssueDate,
getLimit, getName and getNumber.

Answer

Which attributes (name and type) should we introduce?

Answer

private double balance;
private Date expiryDate;
private Date issueDate;
private double limit;
private int number;
private String name;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Attributes

Question

Besides the constructors, which methods in the API give us a good
indication which attributes to introduce?

Answer

The accessors getBalance, getExpiryDate, getIssueDate,
getLimit, getName and getNumber.

Answer

Which attributes (name and type) should we introduce?

Answer

private double balance;
private Date expiryDate;
private Date issueDate;
private double limit;
private int number;
private String name;moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors, accessors and mutators

Problem

Using eclipse, generate a constructor, and the accessors and
mutators. To simplify matters a little, let us exclude the attributes
balance and limit.

Questions

Which accessors or mutators should be made private?

Answer

setIssueDate, setName and getNumber

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors, accessors and mutators

Problem

Using eclipse, generate a constructor, and the accessors and
mutators. To simplify matters a little, let us exclude the attributes
balance and limit.

Questions

Which accessors or mutators should be made private?

Answer

setIssueDate, setName and getNumber

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors, accessors and mutators

Problem

Using eclipse, generate a constructor, and the accessors and
mutators. To simplify matters a little, let us exclude the attributes
balance and limit.

Questions

Which accessors or mutators should be made private?

Answer

setIssueDate, setName and getNumber

moodle.yorku.ca EECS 1030

moodle.yorku.ca


CreditCard Object

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
CreditCard card = new CreditCard(number, name);

Question

Draw the memory diagram depicting memory at the end of the
second line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


CreditCard Object

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
CreditCard card = new CreditCard(number, name);

Question

Draw the memory diagram depicting memory at the end of the
second line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


CreditCard Object

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
CreditCard card = new CreditCard(number, name);

Question

Draw the memory diagram depicting memory at the end of the
second line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


CreditCard Object

100 main invocation
123456 number
200 name
500 card

200 String object
”Virginia Kaarthouer” value

300 Date object
1415637359054 time

400 Date object
1478795881318 time

500 CreditCard object
123456 number
200 name
300 issueDate
400 expiryDate

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Accessors

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer and print its expiry date.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
CreditCard card = new CreditCard(number, name);
Date expiryDate = card.getExpiryDate();
output.println(expiryDate);

Question

Draw the memory diagram depicting memory at the end of the
fourth line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Accessors

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer and print its expiry date.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
CreditCard card = new CreditCard(number, name);
Date expiryDate = card.getExpiryDate();
output.println(expiryDate);

Question

Draw the memory diagram depicting memory at the end of the
fourth line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Accessors

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer and print its expiry date.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
CreditCard card = new CreditCard(number, name);
Date expiryDate = card.getExpiryDate();
output.println(expiryDate);

Question

Draw the memory diagram depicting memory at the end of the
fourth line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Accessors

100 main invocation
123456 number
200 name
500 card
600 expiryDate

200 String object
”Virginia Kaarthouer” value

300 Date object
1415637359054 time

400 Date object
1478795881318 time

500 CreditCard object
123456 number
200 name
300 issueDate
400 expiryDate

600 Date object
1478795881318 time

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Accessors

Question

Why can’t card.getExpiryDate() return a reference to the Date
object on address 400?

Answer

If card.getExpiryDate() were to return a reference to the Date
object on address 400, then both the main invocation and the
CreditCard object would have access to that Date object. But
the CreditCard object “owns” that Date object, because
CreditCard and Date form a composition. Hence, CreditCard
should have exclusive access to that Date object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Accessors

Question

Why can’t card.getExpiryDate() return a reference to the Date
object on address 400?

Answer

If card.getExpiryDate() were to return a reference to the Date
object on address 400, then both the main invocation and the
CreditCard object would have access to that Date object. But
the CreditCard object “owns” that Date object, because
CreditCard and Date form a composition. Hence, CreditCard
should have exclusive access to that Date object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Accessors

Question

Should we modify the accessor for expiryDate generated by
eclipse?

Answer

Yes.

Problem

Modify the accessors for expiryDate and issueDate.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Accessors

Question

Should we modify the accessor for expiryDate generated by
eclipse?

Answer

Yes.

Problem

Modify the accessors for expiryDate and issueDate.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Accessors

Question

Should we modify the accessor for expiryDate generated by
eclipse?

Answer

Yes.

Problem

Modify the accessors for expiryDate and issueDate.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer and set its expiry date to five years from now.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
CreditCard card = new CreditCard(number, name);
Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.YEAR, 5);
Date expiryDate = calendar.getTime();
card.setExpiryDate(expiryDate);

Question

Draw the memory diagram depicting memory at the end of the
sixth line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer and set its expiry date to five years from now.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
CreditCard card = new CreditCard(number, name);
Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.YEAR, 5);
Date expiryDate = calendar.getTime();
card.setExpiryDate(expiryDate);

Question

Draw the memory diagram depicting memory at the end of the
sixth line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer and set its expiry date to five years from now.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
CreditCard card = new CreditCard(number, name);
Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.YEAR, 5);
Date expiryDate = calendar.getTime();
card.setExpiryDate(expiryDate);

Question

Draw the memory diagram depicting memory at the end of the
sixth line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

100 main invocation
123456 number
200 name
500 card
600 calendar
700 expiryDate

200 String object
”Virginia Kaarthouer” value

300 Date object
1415637359054 time

400 Date object
1478795881318 time

500 CreditCard object
300 issueDate
400 expiryDate

600 Calendar object
1415637372347 time

700 Date object
1415637372347 time

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Draw the memory diagram depicting memory at the end of the
seventh line. Draw only those objects that are relevant to the
changes.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

100 main invocation
123456 number
200 name
500 card
600 calendar
700 expiryDate

300 Date object
1415637359054 time

400 Date object
1478795881318 time

500 CreditCard object
300 issueDate
800 expiryDate

700 Date object
1415637372347 time

800 Date object
1415637372347 time

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Why can’t we set the expiryDate attribute to refer to the Date
object on address 700?

Answer

If the expiryDate attribute were to refer to the Date object on
address 700, then both the main invocation and the CreditCard
object would have access to that Date object. But the
CreditCard object “owns” that Date object, because
CreditCard and Date form a composition. Hence, CreditCard
should have exclusive access to that Date object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Why can’t we set the expiryDate attribute to refer to the Date
object on address 700?

Answer

If the expiryDate attribute were to refer to the Date object on
address 700, then both the main invocation and the CreditCard
object would have access to that Date object. But the
CreditCard object “owns” that Date object, because
CreditCard and Date form a composition. Hence, CreditCard
should have exclusive access to that Date object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Should we modify the mutator for expiryDate generated by
eclipse?

Answer

Yes.

Problem

Modify the mutators for expiryDate and issueDate.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Should we modify the mutator for expiryDate generated by
eclipse?

Answer

Yes.

Problem

Modify the mutators for expiryDate and issueDate.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Should we modify the mutator for expiryDate generated by
eclipse?

Answer

Yes.

Problem

Modify the mutators for expiryDate and issueDate.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer and issue date tomorrow.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.DAY, 1);
Date issueDate = calendar.getTime();
CreditCard card = new CreditCard(number, name,
issueDate);

Question

Draw the memory diagram depicting memory at the end of the
sixth line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer and issue date tomorrow.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.DAY, 1);
Date issueDate = calendar.getTime();
CreditCard card = new CreditCard(number, name,
issueDate);

Question

Draw the memory diagram depicting memory at the end of the
sixth line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors

Question

Create a CreditCard object with number 123456 and name
Virginia Kaarthouer and issue date tomorrow.

Answer

int number = 123456;
String name = "Virginia Kaarthouer";
Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.DAY, 1);
Date issueDate = calendar.getTime();
CreditCard card = new CreditCard(number, name,
issueDate);

Question

Draw the memory diagram depicting memory at the end of the
sixth line.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors

100 main invocation
123456 number
200 name
300 calendar
400 expiryDate
500 card

200 String object
”Virginia Kaarthouer” value

300 Calendar object
1415637372347 time

400 Date object
1415637372347 time

500 CreditCard object
600 issueDate
700 expiryDate

600 Date object
1415637372347 time

700 Date object
1415637359054 time

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors

Question

Why can’t the issueDate attribute of the CreditCard object not
refer to the Date object on address 400?

Answer

If the the issueDate attribute of the CreditCard object were to
refer to the Date object on address 400, then both the main
invocation and the CreditCard object would have access to that
Date object. But the CreditCard object “owns” that Date
object, because CreditCard and Date form a composition. Hence,
CreditCard should have exclusive access to that Date object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Constructors

Question

Why can’t the issueDate attribute of the CreditCard object not
refer to the Date object on address 400?

Answer

If the the issueDate attribute of the CreditCard object were to
refer to the Date object on address 400, then both the main
invocation and the CreditCard object would have access to that
Date object. But the CreditCard object “owns” that Date
object, because CreditCard and Date form a composition. Hence,
CreditCard should have exclusive access to that Date object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Should we modify the mutator for expiryDate generated by
eclipse?

Answer

Yes.

Problem

Modify the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Should we modify the mutator for expiryDate generated by
eclipse?

Answer

Yes.

Problem

Modify the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Mutators

Question

Should we modify the mutator for expiryDate generated by
eclipse?

Answer

Yes.

Problem

Modify the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

