
One Armed Bandit

source: http://dogbeforewicket.blogspot.ca

moodle.yorku.ca EECS 1030

moodle.yorku.ca

One Armed Bandit Utility

/**
* Returns the winnings from one pull of the one armed
* bandit.
*
* @param coin the coin deposited in the one armed bandit.
* @return the payoff from one pull of the lever.
*/

public static List<Coin> pull(Coin coin)

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Casino App

List<Coin> wallet = new ArrayList<Coin>();
wallet.add(new Coin());

final int TRIES = 10;
int tries = 0;

while (tries < TRIES && !wallet.isEmpty())
{

Coin coin = wallet.remove(0);
List<Coin> winnings = OneArmedBandit.pull(coin);
wallet.addAll(winnings);
tries++;

}

System.out.printf("After %d tries, %d coins left%n",
tries, wallet.size());

moodle.yorku.ca EECS 1030

moodle.yorku.ca

The Coin Class

Problem

Implement the Coin class. We only need to be able to create Coin
objects, using the default constructor. We do not need any
methods of the Coin class.

Now that we have the Coin class, we can run the Casino app.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

The Coin Class

Problem

Implement the Coin class. We only need to be able to create Coin
objects, using the default constructor. We do not need any
methods of the Coin class.

Now that we have the Coin class, we can run the Casino app.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

How Many Coins?

Question

You win 37 coins in 10 tries. How many Coin objects are there
stored in memory?

Answer

At least 37.

Question

Instead of storing Coin objects in your wallet, could you store
aliases of a single Coin object in your wallet?

Answer

Yes.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

How Many Coins?

Question

You win 37 coins in 10 tries. How many Coin objects are there
stored in memory?

Answer

At least 37.

Question

Instead of storing Coin objects in your wallet, could you store
aliases of a single Coin object in your wallet?

Answer

Yes.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

How Many Coins?

Question

You win 37 coins in 10 tries. How many Coin objects are there
stored in memory?

Answer

At least 37.

Question

Instead of storing Coin objects in your wallet, could you store
aliases of a single Coin object in your wallet?

Answer

Yes.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

How Many Coins?

Question

You win 37 coins in 10 tries. How many Coin objects are there
stored in memory?

Answer

At least 37.

Question

Instead of storing Coin objects in your wallet, could you store
aliases of a single Coin object in your wallet?

Answer

Yes.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Problem

Modify the Coin class so that the client can create at most one
Coin object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Can the client use a constructor to create the Coin object?

Answer

No.

Question

Why not?

Answer

If we provide a public constructor, clients can invoke it as many
times as they want and, hence, create as many Coin objects as
they want.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Can the client use a constructor to create the Coin object?

Answer

No.

Question

Why not?

Answer

If we provide a public constructor, clients can invoke it as many
times as they want and, hence, create as many Coin objects as
they want.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Can the client use a constructor to create the Coin object?

Answer

No.

Question

Why not?

Answer

If we provide a public constructor, clients can invoke it as many
times as they want and, hence, create as many Coin objects as
they want.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Can the client use a constructor to create the Coin object?

Answer

No.

Question

Why not?

Answer

If we provide a public constructor, clients can invoke it as many
times as they want and, hence, create as many Coin objects as
they want.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Since the client cannot use a constructor, what other options does
the client have?

Answer

Methods.

Question

Can the method be non-static?

Answer

No, because you would need a Coin object to invoke it on (and we
are trying to create a Coin object). So the method is static.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Since the client cannot use a constructor, what other options does
the client have?

Answer

Methods.

Question

Can the method be non-static?

Answer

No, because you would need a Coin object to invoke it on (and we
are trying to create a Coin object). So the method is static.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Since the client cannot use a constructor, what other options does
the client have?

Answer

Methods.

Question

Can the method be non-static?

Answer

No, because you would need a Coin object to invoke it on (and we
are trying to create a Coin object). So the method is static.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Since the client cannot use a constructor, what other options does
the client have?

Answer

Methods.

Question

Can the method be non-static?

Answer

No, because you would need a Coin object to invoke it on (and we
are trying to create a Coin object). So the method is static.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

What is the return type of this static method?

Answer

Coin.

Question

Does it have any parameters?

Answer

No.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

What is the return type of this static method?

Answer

Coin.

Question

Does it have any parameters?

Answer

No.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

What is the return type of this static method?

Answer

Coin.

Question

Does it have any parameters?

Answer

No.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

What is the return type of this static method?

Answer

Coin.

Question

Does it have any parameters?

Answer

No.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

public static Coin getInstance()

Question

The method name suggests that the Coin class has a static
attribute. What is its name and type?

Answer

instance and Coin.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

public static Coin getInstance()

Question

The method name suggests that the Coin class has a static
attribute. What is its name and type?

Answer

instance and Coin.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Where do we initialize the attribute?

Answer

In the declaration.

Question

How?

Answer

private static Coin instance = new Coin();

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Where do we initialize the attribute?

Answer

In the declaration.

Question

How?

Answer

private static Coin instance = new Coin();

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Where do we initialize the attribute?

Answer

In the declaration.

Question

How?

Answer

private static Coin instance = new Coin();

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

Where do we initialize the attribute?

Answer

In the declaration.

Question

How?

Answer

private static Coin instance = new Coin();

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

But as we argued earlier, we cannot provide a public constructor.
So, how can we use new Coin() in the Coin class?

Answer

By adding a private default constructor.

Question

Now that we have declared and initialized the instance attribute,
how do we implement the getInstance method?

Answer

return Coin.instance;

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

But as we argued earlier, we cannot provide a public constructor.
So, how can we use new Coin() in the Coin class?

Answer

By adding a private default constructor.

Question

Now that we have declared and initialized the instance attribute,
how do we implement the getInstance method?

Answer

return Coin.instance;

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

But as we argued earlier, we cannot provide a public constructor.
So, how can we use new Coin() in the Coin class?

Answer

By adding a private default constructor.

Question

Now that we have declared and initialized the instance attribute,
how do we implement the getInstance method?

Answer

return Coin.instance;

moodle.yorku.ca EECS 1030

moodle.yorku.ca

A Single Coin

Question

But as we argued earlier, we cannot provide a public constructor.
So, how can we use new Coin() in the Coin class?

Answer

By adding a private default constructor.

Question

Now that we have declared and initialized the instance attribute,
how do we implement the getInstance method?

Answer

return Coin.instance;

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Singleton Design Pattern

The pattern to ensure that at most one object of a particular class
can be created is known as the singleton design pattern.

The example we presented is contrived. In case object represent
physical entities, such as a connection to a database, the singleton
design pattern comes in handy.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Problem

Modify the Coin class some that each coin has a value (of type
int). Make the class immutable.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Problem

Modify the Coin class so that the client can create at most one
Coin object for each value. That is, the client can create different
Coin objects but only if they all have different values.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

Can the client use a constructor to create the Coin object?

Answer

No.

Question

Why not?

Answer

If we provide a public constructor, clients can invoke it as many
times as they want and, hence, create as many Coin objects with
the same value as they want.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

Can the client use a constructor to create the Coin object?

Answer

No.

Question

Why not?

Answer

If we provide a public constructor, clients can invoke it as many
times as they want and, hence, create as many Coin objects with
the same value as they want.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

Can the client use a constructor to create the Coin object?

Answer

No.

Question

Why not?

Answer

If we provide a public constructor, clients can invoke it as many
times as they want and, hence, create as many Coin objects with
the same value as they want.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

Can the client use a constructor to create the Coin object?

Answer

No.

Question

Why not?

Answer

If we provide a public constructor, clients can invoke it as many
times as they want and, hence, create as many Coin objects with
the same value as they want.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

Since the client cannot use a constructor, what other options does
the client have?

Answer

Methods.

Question

Can the method be non-static?

Answer

No, because you would need a Coin object to invoke it on (and we
are trying to create a Coin object). So the method is static.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

Since the client cannot use a constructor, what other options does
the client have?

Answer

Methods.

Question

Can the method be non-static?

Answer

No, because you would need a Coin object to invoke it on (and we
are trying to create a Coin object). So the method is static.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

Since the client cannot use a constructor, what other options does
the client have?

Answer

Methods.

Question

Can the method be non-static?

Answer

No, because you would need a Coin object to invoke it on (and we
are trying to create a Coin object). So the method is static.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

Since the client cannot use a constructor, what other options does
the client have?

Answer

Methods.

Question

Can the method be non-static?

Answer

No, because you would need a Coin object to invoke it on (and we
are trying to create a Coin object). So the method is static.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

What is the return type of this static method?

Answer

Coin.

Question

Does it have any parameters?

Answer

Yes, the value of the coin.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

What is the return type of this static method?

Answer

Coin.

Question

Does it have any parameters?

Answer

Yes, the value of the coin.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

What is the return type of this static method?

Answer

Coin.

Question

Does it have any parameters?

Answer

Yes, the value of the coin.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

What is the return type of this static method?

Answer

Coin.

Question

Does it have any parameters?

Answer

Yes, the value of the coin.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

public static Coin getInstance(int value)

Question

For each value, we have to store a Coin. How can we do that?

Answer

private static Map<Integer, coin> instance

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

public static Coin getInstance(int value)

Question

For each value, we have to store a Coin. How can we do that?

Answer

private static Map<Integer, coin> instance

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

public static Coin getInstance(int value)

Question

For each value, we have to store a Coin. How can we do that?

Answer

private static Map<Integer, coin> instance

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

How do we initialize the attribute?

Answer

private static Map<Integer, coin> instance
= new HashMap<Integer, Coin>();

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

How do we initialize the attribute?

Answer

private static Map<Integer, coin> instance
= new HashMap<Integer, Coin>();

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

How do we implement the getInstance method?

Answer

if (!instance.containsKey(value))
{

Coin.instance.put(value, new Coin(value));
}
return Coin.instance.get(value);

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Coin with Values

Question

How do we implement the getInstance method?

Answer

if (!instance.containsKey(value))
{

Coin.instance.put(value, new Coin(value));
}
return Coin.instance.get(value);

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Multiton Design Pattern

The pattern to ensure that at most one object with a particular
state can be created is known as the multiton design pattern.

Immutable classes such as String and Integer implement this
design pattern.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Concurrency

“Doing multiple things at the same time”

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Concurrency

Question

What happens when we execute

public static Coin getInstance()
{

if (Coin.instance == null)
{
Coin.instance = new Coin();

}
return Coin.instance;

}

twice but at the same time?

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Java Bytecode

getstatic Coin.instance
// get the value of the static attribute
ifnonnull 6
// if the value is not null, go to line 6
new Coin
// create a new Coin object
...
putstatic Coin.instance
// set the value of the static attribute
getstatic Coin.instance
// get the value of the static attribute
areturn

moodle.yorku.ca EECS 1030

moodle.yorku.ca

