
Test 2

The second test will be 75 minutes and will consist of two parts.

The programming part will be about Chapter 2, excluding Section
2.6. You will be asked to implement a utility class with four
methods (an easy one, two of medium difficulty, and a challenging
one). You do not have to include javadoc in your code. This part
will be worth 70% of the marks. If your code does not compile,
you get a 50% penalty (that is, your score for the programming
part will be divided by 2 if your code does not compile).

The ”written” part will be about Chapter 3, excluding Section 3.3.
This part will consist of three questions (one multiple choice, one
short answer question and one longer answer question). This part
will be worth the remaining 30% of the marks.

During the test, you will have access to the textbook. You may
bring a blank piece of paper to the test.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Static attributes and methods

In general, static attributes capture data that is associated with
the class, not with individual objects.

In general, static methods manipulate the passed arguments and
static attributes.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Static attributes and methods

Question

How do you get the value of the static attribute CENTIMETER of
the class Converter?

Answer

Converter.CENTIMETER

Question

How do you invoke the static method convert of the class
Converter with the arguments 1, Converter.METER and
Converter.CENTIMETER?

Answer

Converter.convert(1,
Converter.METER,
Converter.CENTIMETER)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Static attributes and methods

Question

How do you get the value of the static attribute CENTIMETER of
the class Converter?

Answer

Converter.CENTIMETER

Question

How do you invoke the static method convert of the class
Converter with the arguments 1, Converter.METER and
Converter.CENTIMETER?

Answer

Converter.convert(1,
Converter.METER,
Converter.CENTIMETER)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Static attributes and methods

Question

How do you get the value of the static attribute CENTIMETER of
the class Converter?

Answer

Converter.CENTIMETER

Question

How do you invoke the static method convert of the class
Converter with the arguments 1, Converter.METER and
Converter.CENTIMETER?

Answer

Converter.convert(1,
Converter.METER,
Converter.CENTIMETER)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Static attributes and methods

Question

How do you get the value of the static attribute CENTIMETER of
the class Converter?

Answer

Converter.CENTIMETER

Question

How do you invoke the static method convert of the class
Converter with the arguments 1, Converter.METER and
Converter.CENTIMETER?

Answer

Converter.convert(1,
Converter.METER,
Converter.CENTIMETER)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Non-static attributes and methods

In general, non-static attributes capture data that is associated
with individual objects.

In general, non-static methods and constructors manipulate the
passed arguments and non-static attributes (but may also
manipulate static attributes as we will see later in this lecture).

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Non-static attributes and methods

Question

How do you get the value of the non-static attribute width of the
object rectangle?

Answer

rectangle.width (however, usually the non-static attributes are
private and therefore one would have to use
rectangle.getWidth()).

Question

How do you invoke the non-static method scale on the object
rectangle with the argument 2?

Answer

rectangle.scale(2)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Non-static attributes and methods

Question

How do you get the value of the non-static attribute width of the
object rectangle?

Answer

rectangle.width (however, usually the non-static attributes are
private and therefore one would have to use
rectangle.getWidth()).

Question

How do you invoke the non-static method scale on the object
rectangle with the argument 2?

Answer

rectangle.scale(2)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Non-static attributes and methods

Question

How do you get the value of the non-static attribute width of the
object rectangle?

Answer

rectangle.width (however, usually the non-static attributes are
private and therefore one would have to use
rectangle.getWidth()).

Question

How do you invoke the non-static method scale on the object
rectangle with the argument 2?

Answer

rectangle.scale(2)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Non-static attributes and methods

Question

How do you get the value of the non-static attribute width of the
object rectangle?

Answer

rectangle.width (however, usually the non-static attributes are
private and therefore one would have to use
rectangle.getWidth()).

Question

How do you invoke the non-static method scale on the object
rectangle with the argument 2?

Answer

rectangle.scale(2)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Static versus non-static

static features: class

non-static features : object

I will try to always associate

static features with a class (name)

non-static features with an object (reference)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Chapter 4: Mixing Static and Non-Static Features
EECS 1030

moodle.yorku.ca

moodle.yorku.ca EECS 1030

moodle.yorku.ca
moodle.yorku.ca


Counting

Problem

Modify the Rectangle class so that we keep track of the number
of Rectangle objects that have been created.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: specification

Question

What do we add to the Rectangle API?

Answer

A method that returns the number of created Rectangle objects.

Question

Is this method static or non-static?

Answer

Static, since it returns information about the class, not about an
individual object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: specification

Question

What do we add to the Rectangle API?

Answer

A method that returns the number of created Rectangle objects.

Question

Is this method static or non-static?

Answer

Static, since it returns information about the class, not about an
individual object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: specification

Question

What do we add to the Rectangle API?

Answer

A method that returns the number of created Rectangle objects.

Question

Is this method static or non-static?

Answer

Static, since it returns information about the class, not about an
individual object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: specification

Question

What do we add to the Rectangle API?

Answer

A method that returns the number of created Rectangle objects.

Question

Is this method static or non-static?

Answer

Static, since it returns information about the class, not about an
individual object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: design

Question

public static int getNumber()

We need to store the number of created Rectangle objects in an
attribute. Is this attribute static or non-static?

Answer

Static, since it contains information about the class, not about an
individual object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: design

Question

public static int getNumber()

We need to store the number of created Rectangle objects in an
attribute. Is this attribute static or non-static?

Answer

Static, since it contains information about the class, not about an
individual object.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: design

Question

public static int number

Where do we need to increment this number?

Answer

In the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: design

Question

public static int number

Where do we need to increment this number?

Answer

In the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute number?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment the attribute number in the constructor?

Answer

Rectangle.number++ (don’t forget the class name)

Question

How do we return the value of the attribute number in getNumber?

Answer

return Rectangle.number (don’t forget the class name)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute number?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment the attribute number in the constructor?

Answer

Rectangle.number++ (don’t forget the class name)

Question

How do we return the value of the attribute number in getNumber?

Answer

return Rectangle.number (don’t forget the class name)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute number?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment the attribute number in the constructor?

Answer

Rectangle.number++ (don’t forget the class name)

Question

How do we return the value of the attribute number in getNumber?

Answer

return Rectangle.number (don’t forget the class name)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute number?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment the attribute number in the constructor?

Answer

Rectangle.number++ (don’t forget the class name)

Question

How do we return the value of the attribute number in getNumber?

Answer

return Rectangle.number (don’t forget the class name)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute number?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment the attribute number in the constructor?

Answer

Rectangle.number++ (don’t forget the class name)

Question

How do we return the value of the attribute number in getNumber?

Answer

return Rectangle.number (don’t forget the class name)

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute number?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment the attribute number in the constructor?

Answer

Rectangle.number++ (don’t forget the class name)

Question

How do we return the value of the attribute number in getNumber?

Answer

return Rectangle.number (don’t forget the class name)
moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact

Problem

Implement this API of the Contact class.

moodle.yorku.ca EECS 1030

http://www.eecs.yorku.ca/course_archive/2014-15/W/1030/sectionM/api/contact1.api/
moodle.yorku.ca


Client of Contact

Problem

Write an app that creates contacts with names ”You” and ”Me”
and addresses ”Here” and ”There”.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Client of Contact

Problem

Draw the memory diagram that represents memory when the
execution reaches the end of the main method.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Problem

Modify the Contact class such that each Contact object has a
unique number. The first contact has number 10001, the second
one 10002, etc

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Question

How do we represent the unique number of each Contact object
in the Contact class?

Answer

As a non-static attribute.

Question

What is the type of the attribute?

Answer

int

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Question

How do we represent the unique number of each Contact object
in the Contact class?

Answer

As a non-static attribute.

Question

What is the type of the attribute?

Answer

int

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Question

How do we represent the unique number of each Contact object
in the Contact class?

Answer

As a non-static attribute.

Question

What is the type of the attribute?

Answer

int

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Question

How do we represent the unique number of each Contact object
in the Contact class?

Answer

As a non-static attribute.

Question

What is the type of the attribute?

Answer

int

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Problem

Add the non-static attribute and its public accessor and private
mutator.

Problem

Add the new non-static attribute to the memory diagram.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Problem

Add the non-static attribute and its public accessor and private
mutator.

Problem

Add the new non-static attribute to the memory diagram.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Question

Where do we initialize the new non-static attribute?

Answer

In the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Question

Where do we initialize the new non-static attribute?

Answer

In the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Question

If we add a parameter to the constructor, can a client create two
Contact objects with the same number?

Answer

Yes.

Conclusion

Since the number has to be unique, we cannot add a parameter to
the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Question

If we add a parameter to the constructor, can a client create two
Contact objects with the same number?

Answer

Yes.

Conclusion

Since the number has to be unique, we cannot add a parameter to
the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Question

If we add a parameter to the constructor, can a client create two
Contact objects with the same number?

Answer

Yes.

Conclusion

Since the number has to be unique, we cannot add a parameter to
the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

public Contact(String name, String address)
{

this.setName(name);
this.setAddress(address);
this.setNumber(?);

}

Question

The first time the constructor is invoked, which value should be
assigned to number?

Answer

10001

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

public Contact(String name, String address)
{

this.setName(name);
this.setAddress(address);
this.setNumber(?);

}

Question

The first time the constructor is invoked, which value should be
assigned to number?

Answer

10001

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

public Contact(String name, String address)
{

this.setName(name);
this.setAddress(address);
this.setNumber(?);

}

Question

The second time the constructor is invoked, which value should be
assigned to number?

Answer

10002

Observation

This is very similar to the counting of the number of created
Rectangle objects.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

public Contact(String name, String address)
{

this.setName(name);
this.setAddress(address);
this.setNumber(?);

}

Question

The second time the constructor is invoked, which value should be
assigned to number?

Answer

10002

Observation

This is very similar to the counting of the number of created
Rectangle objects.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

public Contact(String name, String address)
{

this.setName(name);
this.setAddress(address);
this.setNumber(?);

}

Question

The second time the constructor is invoked, which value should be
assigned to number?

Answer

10002

Observation

This is very similar to the counting of the number of created
Rectangle objects.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Question

public static int nextNumber

Where do we need to increment this number?

Answer

In the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Contact revisited

Question

public static int nextNumber

Where do we need to increment this number?

Answer

In the constructor.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute nextNumber?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment nextNumber in the constructor?

Answer

Contact.nextNumber++ (don’t forget the class name)

Question

How do we initialize the attribute nextNumber?

Answer

public static int nextNumber = Contact.FIRST NUMBER;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute nextNumber?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment nextNumber in the constructor?

Answer

Contact.nextNumber++ (don’t forget the class name)

Question

How do we initialize the attribute nextNumber?

Answer

public static int nextNumber = Contact.FIRST NUMBER;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute nextNumber?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment nextNumber in the constructor?

Answer

Contact.nextNumber++ (don’t forget the class name)

Question

How do we initialize the attribute nextNumber?

Answer

public static int nextNumber = Contact.FIRST NUMBER;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute nextNumber?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment nextNumber in the constructor?

Answer

Contact.nextNumber++ (don’t forget the class name)

Question

How do we initialize the attribute nextNumber?

Answer

public static int nextNumber = Contact.FIRST NUMBER;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute nextNumber?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment nextNumber in the constructor?

Answer

Contact.nextNumber++ (don’t forget the class name)

Question

How do we initialize the attribute nextNumber?

Answer

public static int nextNumber = Contact.FIRST NUMBER;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Counting: implementation

Question

Where do we initialize the attribute nextNumber?

Answer

Where is it declared, since it is a static attribute.

Question

How do we increment nextNumber in the constructor?

Answer

Contact.nextNumber++ (don’t forget the class name)

Question

How do we initialize the attribute nextNumber?

Answer

public static int nextNumber = Contact.FIRST NUMBER;

moodle.yorku.ca EECS 1030

moodle.yorku.ca


equals method

Question

if (object != null && this.getClass() == object.getClass())
{

Contact other = (Contact) object;
equal = this.getName().equals(other.getName()) &&

this.getAddress().equals(other.getAddress());
}

If the name or address of this Contact is null, what happens?

Answer

A NullPointerException is thrown.

Claim

If this ever happens, it is not the implementer’s fault. But how do
we prove that it is not the implementer’s responsibility?

moodle.yorku.ca EECS 1030

moodle.yorku.ca


equals method

Question

if (object != null && this.getClass() == object.getClass())
{

Contact other = (Contact) object;
equal = this.getName().equals(other.getName()) &&

this.getAddress().equals(other.getAddress());
}

If the name or address of this Contact is null, what happens?

Answer

A NullPointerException is thrown.

Claim

If this ever happens, it is not the implementer’s fault. But how do
we prove that it is not the implementer’s responsibility?

moodle.yorku.ca EECS 1030

moodle.yorku.ca


equals method

Question

if (object != null && this.getClass() == object.getClass())
{

Contact other = (Contact) object;
equal = this.getName().equals(other.getName()) &&

this.getAddress().equals(other.getAddress());
}

If the name or address of this Contact is null, what happens?

Answer

A NullPointerException is thrown.

Claim

If this ever happens, it is not the implementer’s fault. But how do
we prove that it is not the implementer’s responsibility?

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Responsibility

Question

How can we argue that the attributes name and address are never
null? Which parts of the code do we need to consider?

Answer

Those parts that assign values to the attributes name and
address:

the constructor

the mutators

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Responsibility

Question

How can we argue that the attributes name and address are never
null? Which parts of the code do we need to consider?

Answer

Those parts that assign values to the attributes name and
address:

the constructor

the mutators

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Responsibility

Question

Can the constructor assign null to either name or address?

Answer

Yes.

Question

If this would cause a crash, would the implementer be responsible?

Answer

No, because the precondition states number != null, address
!= null.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Responsibility

Question

Can the constructor assign null to either name or address?

Answer

Yes.

Question

If this would cause a crash, would the implementer be responsible?

Answer

No, because the precondition states number != null, address
!= null.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Responsibility

Question

Can the constructor assign null to either name or address?

Answer

Yes.

Question

If this would cause a crash, would the implementer be responsible?

Answer

No, because the precondition states number != null, address
!= null.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Responsibility

Question

Can the constructor assign null to either name or address?

Answer

Yes.

Question

If this would cause a crash, would the implementer be responsible?

Answer

No, because the precondition states number != null, address
!= null.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Responsibility

Question

Assuming that the client satisfies the preconditions, can the
mutators assign null to either name or address?

Answer

No, because the mutators are used properly in the constructor and
they are private (so they cannot be invoked by the client).

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Responsibility

Question

Assuming that the client satisfies the preconditions, can the
mutators assign null to either name or address?

Answer

No, because the mutators are used properly in the constructor and
they are private (so they cannot be invoked by the client).

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Class invariant

We have just shown that this.number != null &&
this.address != null is a class invariant.

Definition

A class invariant is a Boolean expression with the following two
properties:

It is true after each public constructor invocation, provided
that the client ensures that the precondition of the invoked
constructor is met.

It is maintained by each public method invocation, provided
that the client ensures that the precondition of the invoked
method is met.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Class invariant

I will document a class invariant as

//@ invariant this.number != null && this.address != null

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Class invariant

Question

What do we need to check to conclude this.number != null
&& this.address != null is a class invariant?

Answer

If number != null and address != null (precondition) then
after the execution of the constructor

this.setName(name);
this.setAddress(address);

we have that this.number != null && this.address !=
null.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Class invariant

Question

What do we need to check to conclude this.number != null
&& this.address != null is a class invariant?

Answer

If number != null and address != null (precondition) then
after the execution of the constructor

this.setName(name);
this.setAddress(address);

we have that this.number != null && this.address !=
null.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Class invariant

Question

What else do we need to check to conclude this.number !=
null && this.address != null is a class invariant?

Answer

If this.number != null && this.address != null holds
before the execution of getName, getAddress, equals, hashCode
and toString, then this.number != null && this.address
!= null also holds after the execution of those methods.

moodle.yorku.ca EECS 1030

moodle.yorku.ca


Class invariant

Question

What else do we need to check to conclude this.number !=
null && this.address != null is a class invariant?

Answer

If this.number != null && this.address != null holds
before the execution of getName, getAddress, equals, hashCode
and toString, then this.number != null && this.address
!= null also holds after the execution of those methods.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

