
Test 5

The fifth test will be 75 minutes, will consist of two parts and will
take place this week.

The programming part will be about recursion. You will be asked
to implement two recursive methods. This part will be worth 50%.
If your code does not compile, you get a 50% penalty (that is, your
score for the programming part will be divided by 2 if your code
does not compile).

The ”written” part will be about recursion (prove correctness and
termination (15% each), determine the recurrence relation (5%)
and a big-O proof (15%)).

During the test, you will have access to the textbook. You may
bring a blank piece of paper to the test.

moodle.yorku.ca EECS 1030 1 / 16

moodle.yorku.ca


Implementing Data Structures
EECS 1030

moodle.yorku.ca

moodle.yorku.ca EECS 1030 2 / 16

moodle.yorku.ca
moodle.yorku.ca


Data structures

Data structures

A data structure represents data and operations to manipulate that
data.

Data structures in Java

In Java, data structures are usually represented by classes, where
the data is generally captured by means of attributes and the
operations are usually represented by methods.

Examples

ArrayList, LinkedList, HashSet, TreeSet, HashMap, and TreeMap.

moodle.yorku.ca EECS 1030 3 / 16

moodle.yorku.ca


Data structures

Data structures

A data structure represents data and operations to manipulate that
data.

Data structures in Java

In Java, data structures are usually represented by classes, where
the data is generally captured by means of attributes and the
operations are usually represented by methods.

Examples

ArrayList, LinkedList, HashSet, TreeSet, HashMap, and TreeMap.

moodle.yorku.ca EECS 1030 3 / 16

moodle.yorku.ca


Data structures

Data structures

A data structure represents data and operations to manipulate that
data.

Data structures in Java

In Java, data structures are usually represented by classes, where
the data is generally captured by means of attributes and the
operations are usually represented by methods.

Examples

ArrayList, LinkedList, HashSet, TreeSet, HashMap, and TreeMap.

moodle.yorku.ca EECS 1030 3 / 16

moodle.yorku.ca


ListString

The ListString interface is a simplified version of the List
interface.

The elements of the list are strings.

Not all methods of List are included in ListString.

Some of the methods of List are simplified.

The API of the ListString interface can be found here.

moodle.yorku.ca EECS 1030 4 / 16

http://www.eecs.yorku.ca/course_archive/2014-15/W/1030/sectionM/api/ListString.java.api/
moodle.yorku.ca


LinkedListString

Problem

Implement the ListString using a linked list of nodes.

["this", "is", "a", "list"]

//

��

//

��

//

��

//

��
”this” ”is” ”a” ”list”

moodle.yorku.ca EECS 1030 5 / 16

moodle.yorku.ca


LinkedListString

Problem

Implement the ListString using a linked list of nodes.

["this", "is", "a", "list"]

//

��

//

��

//

��

//

��
”this” ”is” ”a” ”list”

moodle.yorku.ca EECS 1030 5 / 16

moodle.yorku.ca


LinkedListString

Problem

Implement the ListString using a linked list of nodes.

["this", "is", "a", "list"]

//

��

//

��

//

��

//

��
”this” ”is” ”a” ”list”

moodle.yorku.ca EECS 1030 5 / 16

moodle.yorku.ca


Node

//

��

//

��

//

��

//

��
”this” ”is” ”a” ”list”

Question

The empty boxes represent the Node objects. The nonempty boxes
represent the String objects.

An arrow from one box to another represents that the former
object has an attribute whose value is the latter object.

How many attributes does the Node object have?

Answer

Two.

moodle.yorku.ca EECS 1030 6 / 16

moodle.yorku.ca


Node

//

��

//

��

//

��

//

��
”this” ”is” ”a” ”list”

Question

The empty boxes represent the Node objects. The nonempty boxes
represent the String objects.

An arrow from one box to another represents that the former
object has an attribute whose value is the latter object.

How many attributes does the Node object have?

Answer

Two.

moodle.yorku.ca EECS 1030 6 / 16

moodle.yorku.ca


Node

//

��

//

��

//

��

//

��
”this” ”is” ”a” ”list”

Question

The empty boxes represent the Node objects. The nonempty boxes
represent the String objects.

An arrow from one box to another represents that the former
object has an attribute whose value is the latter object.

What are the types of the two attributes of the Node class?

Answer

String and Node.

moodle.yorku.ca EECS 1030 7 / 16

moodle.yorku.ca


Node

//

��

//

��

//

��

//

��
”this” ”is” ”a” ”list”

Question

The empty boxes represent the Node objects. The nonempty boxes
represent the String objects.

An arrow from one box to another represents that the former
object has an attribute whose value is the latter object.

What are the types of the two attributes of the Node class?

Answer

String and Node.

moodle.yorku.ca EECS 1030 7 / 16

moodle.yorku.ca


Node

Draw the UML diagram of the Node class.

moodle.yorku.ca EECS 1030 8 / 16

moodle.yorku.ca


Node

Problem

Create a class named Node with attributes element of type
String and next of type Node.

moodle.yorku.ca EECS 1030 9 / 16

moodle.yorku.ca


Node

//

��

//

��

//

��

//

��
”this” ”is” ”a” ”list”

Problem

Write a snippet of Java code that creates the above structure.

moodle.yorku.ca EECS 1030 10 / 16

moodle.yorku.ca


Node

//

��

//

��

//

��

//

��
”this” ”is” ”a” ”list”

Node node = new Node("list", null);
node = new Node("a", node);
node = new Node("is", node);
node = new Node("this", node);

moodle.yorku.ca EECS 1030 11 / 16

moodle.yorku.ca


Node

Node node = new Node("list", null);
node = new Node("a", node);
node = new Node("is", node);
node = new Node("this", node);

Problem

Draw the corresponding memory diagrams.

moodle.yorku.ca EECS 1030 12 / 16

moodle.yorku.ca


Memory diagrams

Node node = new Node(”list”, null);
node = new Node(”a”, node);
node = new Node(”is”, node);
node = new Node(”this”, node);

100 main invocation
node

moodle.yorku.ca EECS 1030 13 / 16

moodle.yorku.ca


Memory diagrams

Node node = new Node(”list”, null);
node = new Node(”a”, node);
node = new Node(”is”, node);
node = new Node(”this”, node);

100 main invocation
300 node

200 String object
”list”

300 Node object
200 element
null next

moodle.yorku.ca EECS 1030 14 / 16

moodle.yorku.ca


Memory diagrams

Node node = new Node(”list”, null);
node = new Node(”a”, node);
node = new Node(”is”, node);
node = new Node(”this”, node);

100 main invocation
500 node

200 String object
”list”

300 Node object
200 element
null next

400 String object
”a”

500 Node object
400 element
300 next

moodle.yorku.ca EECS 1030 15 / 16

moodle.yorku.ca


ListString

Problem

Create the class LinkedListString that implements the interface
ListString.

Use recursion.a

aAll methods can be implemented using iteration, but we want to practice
recursion some more.

moodle.yorku.ca EECS 1030 16 / 16

moodle.yorku.ca

