Chapter 7: Recursion EECS 1030

moodle. yorku.ca

```
/**
    * Returns 3 raised to the given power.
    *
    * @param n a number.
    * @pre. n >= 0
    */
public static BigInteger pow3(int n)
```

```
BigInteger power = BigInteger.ONE;
for (int i = 0; i < n; i++)
{
        power = power.multiply(THREE);
}
```

```
BigInteger power;
if (n == 0)
{
    power = BigInteger.ONE;
}
else
{
        power = pow3(n - 1).multiply(THREE);
}
```

```
BigInteger power;
if (n == 0)
{
    power = BigInteger.ONE;
}
else if (n % 2 == 1)
{
        power = pow3(n - 1).multiply(THREE);
}
else
{
        power = pow3(n / 2).multiply(pow3(n / 2));
}
```

```
BigInteger power;
if ( \(\mathrm{n}==0\) )
\{
        power = BigInteger.ONE;
\}
else if ( \(\mathrm{n} \% \mathrm{2}==1\) )
\{
    power = pow3(n - 1).multiply(THREE);
\}
else
\{
    BigInteger temp = power (n / 2);
    power = temp.multiply(temp);
\}
```


Experimental comparison

Estimating the number of elementary actions

$$
\left.\left.\begin{array}{l}
I(n)=12 n+2 \\
\left.\begin{array}{l}
R_{1}(0)=6 \\
R_{1}(n)=R_{1}(n-1)+6
\end{array}\right\} R_{1}(n)=6 n+6 \\
R_{2}(0)=6 \\
R_{2}(n)=\left\{\begin{array}{ll}
R_{2}(n-1)+11 & \text { if } n \text { is odd } \\
2 R_{2}(n / 2)+11 & \text { if } n \text { is even }
\end{array}\right\} \begin{array}{l}
R_{2}(n) \leq 28 n+6 \\
R_{2}(n) \geq 11 n+6
\end{array} \\
R_{3}(0)=6 \\
R_{3}(n)=\left\{\begin{array}{l}
R_{3}(n-1)+11 \text { if } n \text { is odd } \\
R_{3}(n / 2)+11
\end{array} \text { if } n\right. \text { is even }
\end{array}\right\} \begin{array}{l}
R_{3}(n) \leq 11 \log _{2}(n+2)+50 \\
R_{3}(n) \geq 6 \log _{2}(n+2)
\end{array}\right]
$$

Theoretical comparison

Theoretical comparison

But those are just estimates

Question

I estimate

$$
R(n)=14 n+7
$$

and you estimate

$$
R(n)=12 n+38
$$

How can these estimates be of any use?

But those are just estimates

Answer

To compare different algorithms we are only interested in the shape of the graphs, not the actual numbers.

Running time comparison: first attempt

Definition

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ estimate the number of elementary instructions executed by two algorithms. We say that f is ${ }^{a}$ at least as good as g if
there exists a $F>0$, such that for all $n \geq 0, f(n) \leq F \times g(n)$
${ }^{\text {a }}$ Instead of "is", "scales" might be even a better word here.

Running time comparison: first attempt

Definition

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ estimate the number of elementary instructions executed by two algorithms. We say that f is ${ }^{a}$ at least as good as g if
there exists a $F>0$, such that for all $n \geq 0, f(n) \leq F \times g(n)$
${ }^{\text {a }}$ Instead of "is", "scales" might be even a better word here.

Notation

Instead of
there exists a $F>0$, such that for all $n \geq 0, f(n) \leq F \times g(n)$
we write

$$
\exists F>0: \forall n \geq 0: f(n) \leq F \times g(n)
$$

Running time comparison: first attempt

Claim

Recall that $I(n)=12 n+2$ and $R_{1}(n)=6 n+6 . I$ is at least as good as R_{1}.

Running time comparison: first attempt

Claim

Recall that $I(n)=12 n+2$ and $R_{1}(n)=6 n+6 . I$ is at least as good as R_{1}.

Proof

We have to show that

$$
\exists F>0: \forall n \geq 0: I(n) \leq F \times R_{1}(n)
$$

We pick $F=2$. Let $n \geq 0$. Then

$$
\begin{aligned}
I(n) & =12 n+2 \\
& \leq 12 n+12 \\
& =2 \times(6 n+6) \\
& =F \times R_{1}(n) .
\end{aligned}
$$

Running time comparison: first attempt

Claim

Recall that $I(n)=12 n+2$ and $R_{1}(n)=6 n+6 . R_{1}$ is at least as good as I.

Running time comparison: first attempt

Claim

Recall that $I(n)=12 n+2$ and $R_{1}(n)=6 n+6 . R_{1}$ is at least as good as I.

Proof

We have to show that

$$
\exists F>0: \forall n \geq 0: R_{1}(n) \leq F \times I(n)
$$

We pick $F=3$. Let $n \geq 0$. Then

$$
\begin{aligned}
R_{1}(n) & =6 n+6 \\
& \leq 36 n+6 \\
& =3 \times(12 n+2) \\
& =F \times I(n) .
\end{aligned}
$$

Running time comparison: first attempt

Claim

Recall that $R_{1}(n)=6 n+6$ and $11 n+6 \leq R_{2}(n) \leq 28 n+6 . R_{1}$ is at least as good as R_{2}.

Running time comparison: first attempt

Claim

Recall that $R_{1}(n)=6 n+6$ and $11 n+6 \leq R_{2}(n) \leq 28 n+6 . R_{1}$ is at least as good as R_{2}.

Proof

We have to show that

$$
\exists F>0: \forall n \geq 0: R_{1}(n) \leq F \times R_{2}(n)
$$

We pick $F=1$. Let $n \geq 0$. Then

$$
\begin{aligned}
R_{1}(n) & =6 n+6 \\
& \leq 11 n+6 \\
& =1 \times(11 n+6) \\
& \leq F \times R_{2}(n)
\end{aligned}
$$

Running time comparison: first attempt

Claim

Recall that $R_{1}(n)=6 n+6$ and $11 n+6 \leq R_{2}(n) \leq 28 n+6 . R_{2}$ is at least as good as R_{1}.

Running time comparison: first attempt

Claim

Recall that $R_{1}(n)=6 n+6$ and $11 n+6 \leq R_{2}(n) \leq 28 n+6 . R_{2}$ is at least as good as R_{1}.

Proof

We have to show that

$$
\exists F>0: \forall n \geq 0: R_{2}(n) \leq F \times R_{1}(n)
$$

We pick $F=5$. Let $n \geq 0$. Then

$$
\begin{aligned}
R_{2}(n) & =28 n+6 \\
& \leq 30 n+30 \\
& =5 \times(6 n+6) \\
& \leq F \times R_{1}(n) .
\end{aligned}
$$

Running time comparison: first attempt

Claim

Recall that $R_{1}(n)=6 n+6$ and $6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50$. R_{3} is at least as good as R_{1}.

Running time comparison: first attempt

Claim

Recall that $R_{1}(n)=6 n+6$ and
$6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50$. R_{3} is at least as good as R_{1}.

Proof

We have to show that

$$
\exists F>0: \forall n \geq 0: R_{3}(n) \leq F \times R_{1}(n)
$$

We pick $F=11$. Let $n \geq 0$. Then

$$
\begin{aligned}
R_{3}(n) & \leq 11 \log _{2}(n+2)+50 \\
& \leq 66 n+66 \\
& =11 \times(6 n+6) \\
& \leq F \times R_{1}(n)
\end{aligned}
$$

Running time comparison: first attempt

Claim

Recall that $R_{1}(n)=6 n+6$ and $6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50$. R_{1} is not at least as good as R_{3}.

Running time comparison: first attempt

Claim

Recall that $R_{1}(n)=6 n+6$ and $6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50$. R_{1} is not at least as good as R_{3}.

Proof

We have to show that

$$
\forall F>0: \exists n \geq 0: R_{1}(n)>F \times R_{3}(n)
$$

Let $F>0$. Pick $n=2^{F+10}$. Then

$$
\begin{aligned}
R_{1}(n) & =6 n+6 \\
& =6 \times 2^{F+10}+6 \\
& >F \times\left(11\left(\log _{2}\left(2^{F+10}+2\right)+50\right)\right. \\
& =F \times\left(11 \log _{2}(n+2)+50\right) \\
& \geq F \times R_{3}(n)
\end{aligned}
$$

Running time comparison: first attempt

Question

I, R_{1} and R_{2} are all comparable. What do these functions have in common?

Running time comparison: first attempt

Question

I, R_{1} and R_{2} are all comparable. What do these functions have in common?

Answer

They are all linear functions. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is linear if

$$
\exists a>0: \exists b \geq 0: f(n)=a n+b
$$

Running time comparison: first attempt

Question

I, R_{1} and R_{2} are all comparable. What do these functions have in common?

Answer

They are all linear functions. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is linear if

$$
\exists a>0: \exists b \geq 0: f(n)=a n+b
$$

Question

What is the "simplest" linear function?

Running time comparison: first attempt

Question

I, R_{1} and R_{2} are all comparable. What do these functions have in common?

Answer

They are all linear functions. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is linear if

$$
\exists a>0: \exists b \geq 0: f(n)=a n+b
$$

Question

What is the "simplest" linear function?

Answer

The function $i d: \mathbb{N} \rightarrow \mathbb{N}$ defined by $i d(n)=n$.

Running time comparison: first attempt

Question

Let $i d(n)=n$ and $R_{1}(n)=6 n+6$. Is R_{1} at least as good as id?

Running time comparison: first attempt

Question

Let $i d(n)=n$ and $R_{1}(n)=6 n+6$. Is R_{1} at least as good as id?

Answer
No.

Running time comparison: first attempt

Question

Let $i d(n)=n$ and $R_{1}(n)=6 n+6$. Is R_{1} at least as good as $i d$?

Answer

 No.
Proof

Towards a contradiction, assume that R_{1} is at least as good as id. Then

$$
\exists F>0: \forall n \geq 0: R_{1}(n) \leq F \times i d(n)
$$

Then $6=R_{1}(0) \leq F \times i d(0)=F \times 0=0$. Since it is not the case that $6 \leq 0$, we have reached a contradiction.

Running time comparison: second attempt

Definition

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ estimate the number of elementary instructions executed by two algorithms. We say that f is at least as good as g, denoted $f \in O(g)$, if
there exists a $M \geq 0$, there exists a $F>0$, such that for all $n \geq M, f(n) \leq F \times g(n)$

Running time comparison: second attempt

Definition

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ estimate the number of elementary instructions executed by two algorithms. We say that f is at least as good as g, denoted $f \in O(g)$, if
there exists a $M \geq 0$, there exists a $F>0$, such that for all $n \geq M, f(n) \leq F \times g(n)$

Notation

Instead of
there exists a $M \geq 0$, there exists a $F>0$, such that for all $n \geq M, f(n) \leq F \times g(n)$
we write

$$
\exists M \geq 0: \exists F>0: \forall n \geq M: f(n) \leq F \times g(n)
$$

Running time comparison: second attempt

Claim
Recall that $I=12 n+2$ and $R_{1}(n)=6 n+6 . I \in O\left(R_{1}\right)$.

Running time comparison: second attempt

Claim

Recall that $I=12 n+2$ and $R_{1}(n)=6 n+6 . \quad I \in O\left(R_{1}\right)$.

Proof

We have to show that

$$
\exists M \geq 0: \exists F>0: \forall n \geq M: I(n) \leq F \times R_{1}(n)
$$

We pick $M=0$ and $F=2$. Let $n \geq M$. Then

$$
\begin{aligned}
I(n) & =12 n+2 \\
& \leq 12 n+12 \\
& =2 \times(6 n+6) \\
& =F \times R_{1}(n)
\end{aligned}
$$

Running time comparison: second attempt

Claim
Recall that $R_{1}(n)=6 n+6$ and $i d(n)=n . R_{1} \in O(i d)$.

Running time comparison: second attempt

Claim

Recall that $R_{1}(n)=6 n+6$ and $i d(n)=n . R_{1} \in O(i d)$.

Proof

We have to show that

$$
\exists M \geq 0: \exists F>0: \forall n \geq M: R_{1}(n) \leq F \times i d(n)
$$

We pick $M=6$ and $F=7$. Let $n \geq M$. Then

$$
\begin{aligned}
R_{1}(n) & =6 n+6 \\
& \leq 6 n+n \\
& =7 n \\
& =7 \times i d(n)
\end{aligned}
$$

Big-O notation

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $f(n)=n$. Instead of $O(f)$ we write $O(n)$.

Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $g(n)=\log _{2}(n)$. Instead of $O(g)$ we write $O\left(\log _{2}(n)\right)$.

Let $h: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $h(n)=n^{2}$. Instead of $O(h)$ we write $O\left(n^{2}\right)$.

Running time comparison: second attempt

Claim

Recall $6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50$. $R_{3} \in O\left(\log _{2}(n)\right)$.

Running time comparison: second attempt

Claim

Recall $6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50$.
$R_{3} \in O\left(\log _{2}(n)\right)$.

Proof

We have to show that

$$
\exists M \geq 0: \exists F>0: \forall n \geq M: R_{3}(n) \leq F \times \log _{2}(n)
$$

Pick $M=2$ and $F=100$. Let $n \geq M$. Then

$$
\begin{aligned}
R_{3}(n) & \leq 11 \log _{2}(n+2)+50 \\
& \leq 100 \times \log _{2}(n) \\
& =F \times \log _{2}(n)
\end{aligned}
$$

Big-O notation: terminology

$O(1)$	constant
$O(\log (n))$	logarithmic
$O(n)$	linear
$O(n \log (n))$	linearithmic
$O\left(n^{2}\right)$	quadratic
$O\left(2^{n}\right)$	exponential

Big-O notation

Powers of 3

- $I, R_{1}, R_{2} \in O(n)$
- $R_{3} \in O(\log (n))$

Powers of 3

Claim

Recall $6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50 . R_{3} \in O(n)$.

Powers of 3

Claim

Recall $6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50 . R_{3} \in O(n)$.

Proof

We have to show that

$$
\exists M \geq 0: \exists F>0: \forall n \geq M: R_{3}(n) \leq F \times n
$$

Pick $M=2$ and $F=100$. Let $n \geq M$. Then

$$
\begin{aligned}
R_{3}(n) & \leq 11 \log _{2}(n+2)+50 \\
& \leq 100 \times n \\
& =F \times n
\end{aligned}
$$

Powers of 3

Claim

Recall $6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50 . R_{3} \in O\left(n^{2}\right)$.

Powers of 3

Claim

Recall $6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50 . R_{3} \in O\left(n^{2}\right)$.

Proof

We have to show that

$$
\exists M \geq 0: \exists F>0: \forall n \geq M: R_{3}(n) \leq F \times n^{2}
$$

Pick $M=2$ and $F=100$. Let $n \geq M$. Then

$$
\begin{aligned}
R_{3}(n) & \leq 11 \log _{2}(n+2)+50 \\
& \leq 100 \times n^{2} \\
& =F \times n
\end{aligned}
$$

Big-Theta notation

Definition

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ estimate the number of elementary instructions executed by two algorithms. We say that f is as good as g, denoted $f \in \Theta(g)$, if

$$
f \in O(g) \text { and } g \in O(f) \text {. }
$$

Running time comparison

Claim
Recall $6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50$. $\log _{2}(n) \in O\left(R_{3}\right)$.

Running time comparison

Claim

Recall $6 \log _{2}(n+2) \leq R_{3}(n) \leq 11 \log _{2}(n+2)+50$. $\log _{2}(n) \in O\left(R_{3}\right)$.

Proof

We have to show that

$$
\exists M \geq 0: \exists F>0: \forall n \geq M: \log _{2}(n) \leq F \times R_{3}(n)
$$

Pick $M=0$ and $F=1$. Let $n \geq M$. Then

$$
\begin{aligned}
\log _{2}(n) & \leq 11 \log _{2}(n+2)+50 \\
& =F \times R_{3}(n)
\end{aligned}
$$

Big-Theta notation

Claim
 $R_{3} \in \Theta\left(\log _{2}(n)\right)$.

Big-Theta notation

Claim

$R_{3} \in \Theta\left(\log _{2}(n)\right)$.

Proof

Since we have already shown that $R_{3} \in O\left(\log _{2}(n)\right)$ and $\log _{2}(n) \in O\left(R_{3}\right)$, we can conclude that $R_{3} \in \Theta\left(\log _{2}(n)\right)$.

Big-Theta notation

Claim

$R_{3} \in \Theta\left(\log _{2}(n)\right)$.

Proof

Since we have already shown that $R_{3} \in O\left(\log _{2}(n)\right)$ and $\log _{2}(n) \in O\left(R_{3}\right)$, we can conclude that $R_{3} \in \Theta\left(\log _{2}(n)\right)$.

Claim

$I, R_{1}, R_{2} \in \Theta(n)$.

Question

If you have to calculate some power(s) of 3 , which algorithm would you use?

Powers of 3

Question

If you have to calculate some power(s) of 3 , which algorithm would you use?

Answer
This depends on the value(s) of n for which you have to compute pow3(n).

Powers of 3

Question

If you have to calculate pow3(4), which algorithm would you use?

Powers of 3

Question

If you have to calculate pow3(4), which algorithm would you use?

Answer

None. Just use 81.

Question

If you have to calculate many $\operatorname{pow} 3(n)$ in the range $0 \leq n \leq 100$, which algorithm would you use?

Powers of 3

Question

If you have to calculate many $\operatorname{pow} 3(n)$ in the range $0 \leq n \leq 100$, which algorithm would you use?

Answer

Use a simple algorithm such as $/$ or R_{1} to compute pow3(n) for all $0 \leq n \leq 100$ and store them in a map.
private final static Map<Integer, BigInteger> pow3 = new HashMap<Integer, BigInteger>();
static
\{
BigInteger power = BigInteger.ONE; for (int i = 0; i <= 100; i++)
\{
pow3.put(i, power); power = power.multiply(THREE);
\}
\}
public static BigInteger pow3(int n)
\{
return pow3.get(n);
\}

Question

If you have to calculate pow3(n) for large values of n, which algorithm would you use?

Powers of 3

Question

If you have to calculate pow3(n) for large values of n, which algorithm would you use?

Answer

Use R_{3}.

