
Chapter 7: Recursion
EECS 1030

moodle.yorku.ca

moodle.yorku.ca EECS 1030 1 / 39

moodle.yorku.ca
moodle.yorku.ca

Powers of 3

/**
* Returns 3 raised to the given power.
*
* @param n a number.
* @pre. n >= 0
*/

public static BigInteger pow3(int n)

moodle.yorku.ca EECS 1030 2 / 39

moodle.yorku.ca

Powers of 3: Iteration

BigInteger power = BigInteger.ONE;
for (int i = 0; i < n; i++)
{

power = power.multiply(THREE);
}

moodle.yorku.ca EECS 1030 3 / 39

moodle.yorku.ca

Powers of 3: Recursion – version 1

BigInteger power;
if (n == 0)
{

power = BigInteger.ONE;
}
else
{

power = pow3(n - 1).multiply(THREE);
}

moodle.yorku.ca EECS 1030 4 / 39

moodle.yorku.ca

Powers of 3: Recursion – version 2

BigInteger power;
if (n == 0)
{

power = BigInteger.ONE;
}
else if (n % 2 == 1)
{

power = pow3(n - 1).multiply(THREE);
}
else
{

power = pow3(n / 2).multiply(pow3(n / 2));
}

moodle.yorku.ca EECS 1030 5 / 39

moodle.yorku.ca

Powers of 3: Recursion – version 3

BigInteger power;
if (n == 0)
{

power = BigInteger.ONE;
}
else if (n % 2 == 1)
{

power = pow3(n - 1).multiply(THREE);
}
else
{

BigInteger temp = power(n / 2);
power = temp.multiply(temp);

}

moodle.yorku.ca EECS 1030 6 / 39

moodle.yorku.ca

Experimental comparison

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0 100 200 300 400

ns

n

Time to compute pow3(n) in nanoseconds

Iteration

Recursion-1

Recursion-2

Recursion-3

moodle.yorku.ca EECS 1030 7 / 39

moodle.yorku.ca

Estimating the number of elementary actions

I (n) = 12n + 2

R1(0) = 6
R1(n) = R1(n − 1) + 6

}
R1(n) = 6n + 6

R2(0) = 6

R2(n) =

{
R2(n − 1) + 11 if n is odd
2R2(n/2) + 11 if n is even

R2(n) ≤ 28n + 6
R2(n) ≥ 11n + 6

R3(0) = 6

R3(n) =

{
R3(n − 1) + 11 if n is odd
R3(n/2) + 11 if n is even

R3(n) ≤ 11 log2(n + 2) + 50
R3(n) ≥ 6 log2(n + 2)

moodle.yorku.ca EECS 1030 8 / 39

moodle.yorku.ca

Theoretical comparison

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 100 200 300 400

el
em

en
ta

ry
 in

st
ru

ct
io

ns

n

Time to compute pow3(n) in elementary instructions

Iteration

Recursion-1

Recursion-2

Recursion-4

moodle.yorku.ca EECS 1030 9 / 39

moodle.yorku.ca

Theoretical comparison

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12

el
em

en
ta

ry
 in

st
ru

ct
io

ns

n

Time to compute pow3(n) in elementary instructions

Iteration

Recursion-1

Recursion-2

Recursion-3

moodle.yorku.ca EECS 1030 10 / 39

moodle.yorku.ca

But those are just estimates ...

Question

I estimate
R(n) = 14n + 7

and you estimate
R(n) = 12n + 38

How can these estimates be of any use?

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60
n

14n+7

12n+38

moodle.yorku.ca EECS 1030 11 / 39

moodle.yorku.ca

But those are just estimates ...

Answer

To compare different algorithms we are only interested in the
shape of the graphs, not the actual numbers.

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60
n

14n+7

12n+38

moodle.yorku.ca EECS 1030 12 / 39

moodle.yorku.ca

Running time comparison: first attempt

Definition

Let f : N→ N and g : N→ N estimate the number of elementary
instructions executed by two algorithms. We say that f isa at least
as good as g if

there exists a F > 0, such that for all n ≥ 0, f (n) ≤ F × g(n)

aInstead of “is”, “scales” might be even a better word here.

Notation

Instead of

there exists a F > 0, such that for all n ≥ 0, f (n) ≤ F × g(n)

we write
∃F > 0 : ∀n ≥ 0 : f (n) ≤ F × g(n)

moodle.yorku.ca EECS 1030 13 / 39

moodle.yorku.ca

Running time comparison: first attempt

Definition

Let f : N→ N and g : N→ N estimate the number of elementary
instructions executed by two algorithms. We say that f isa at least
as good as g if

there exists a F > 0, such that for all n ≥ 0, f (n) ≤ F × g(n)

aInstead of “is”, “scales” might be even a better word here.

Notation

Instead of

there exists a F > 0, such that for all n ≥ 0, f (n) ≤ F × g(n)

we write
∃F > 0 : ∀n ≥ 0 : f (n) ≤ F × g(n)

moodle.yorku.ca EECS 1030 13 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that I (n) = 12n + 2 and R1(n) = 6n + 6. I is at least as
good as R1.

Proof

We have to show that

∃F > 0 : ∀n ≥ 0 : I (n) ≤ F × R1(n)

We pick F = 2. Let n ≥ 0. Then

I (n) = 12n + 2

≤ 12n + 12

= 2× (6n + 6)

= F × R1(n).

moodle.yorku.ca EECS 1030 14 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that I (n) = 12n + 2 and R1(n) = 6n + 6. I is at least as
good as R1.

Proof

We have to show that

∃F > 0 : ∀n ≥ 0 : I (n) ≤ F × R1(n)

We pick F = 2. Let n ≥ 0. Then

I (n) = 12n + 2

≤ 12n + 12

= 2× (6n + 6)

= F × R1(n).

moodle.yorku.ca EECS 1030 14 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that I (n) = 12n + 2 and R1(n) = 6n + 6. R1 is at least as
good as I .

Proof

We have to show that

∃F > 0 : ∀n ≥ 0 : R1(n) ≤ F × I (n)

We pick F = 3. Let n ≥ 0. Then

R1(n) = 6n + 6

≤ 36n + 6

= 3× (12n + 2)

= F × I (n).

moodle.yorku.ca EECS 1030 15 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that I (n) = 12n + 2 and R1(n) = 6n + 6. R1 is at least as
good as I .

Proof

We have to show that

∃F > 0 : ∀n ≥ 0 : R1(n) ≤ F × I (n)

We pick F = 3. Let n ≥ 0. Then

R1(n) = 6n + 6

≤ 36n + 6

= 3× (12n + 2)

= F × I (n).

moodle.yorku.ca EECS 1030 15 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that R1(n) = 6n + 6 and 11n + 6 ≤ R2(n) ≤ 28n + 6. R1 is
at least as good as R2.

Proof

We have to show that

∃F > 0 : ∀n ≥ 0 : R1(n) ≤ F × R2(n)

We pick F = 1. Let n ≥ 0. Then

R1(n) = 6n + 6

≤ 11n + 6

= 1× (11n + 6)

≤ F × R2(n).

moodle.yorku.ca EECS 1030 16 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that R1(n) = 6n + 6 and 11n + 6 ≤ R2(n) ≤ 28n + 6. R1 is
at least as good as R2.

Proof

We have to show that

∃F > 0 : ∀n ≥ 0 : R1(n) ≤ F × R2(n)

We pick F = 1. Let n ≥ 0. Then

R1(n) = 6n + 6

≤ 11n + 6

= 1× (11n + 6)

≤ F × R2(n).

moodle.yorku.ca EECS 1030 16 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that R1(n) = 6n + 6 and 11n + 6 ≤ R2(n) ≤ 28n + 6. R2 is
at least as good as R1.

Proof

We have to show that

∃F > 0 : ∀n ≥ 0 : R2(n) ≤ F × R1(n)

We pick F = 5. Let n ≥ 0. Then

R2(n) = 28n + 6

≤ 30n + 30

= 5× (6n + 6)

≤ F × R1(n).

moodle.yorku.ca EECS 1030 17 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that R1(n) = 6n + 6 and 11n + 6 ≤ R2(n) ≤ 28n + 6. R2 is
at least as good as R1.

Proof

We have to show that

∃F > 0 : ∀n ≥ 0 : R2(n) ≤ F × R1(n)

We pick F = 5. Let n ≥ 0. Then

R2(n) = 28n + 6

≤ 30n + 30

= 5× (6n + 6)

≤ F × R1(n).

moodle.yorku.ca EECS 1030 17 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that R1(n) = 6n + 6 and
6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50. R3 is at least as good
as R1.

Proof

We have to show that

∃F > 0 : ∀n ≥ 0 : R3(n) ≤ F × R1(n)

We pick F = 11. Let n ≥ 0. Then

R3(n) ≤ 11 log2(n + 2) + 50

≤ 66n + 66

= 11× (6n + 6)

≤ F × R1(n).

moodle.yorku.ca EECS 1030 18 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that R1(n) = 6n + 6 and
6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50. R3 is at least as good
as R1.

Proof

We have to show that

∃F > 0 : ∀n ≥ 0 : R3(n) ≤ F × R1(n)

We pick F = 11. Let n ≥ 0. Then

R3(n) ≤ 11 log2(n + 2) + 50

≤ 66n + 66

= 11× (6n + 6)

≤ F × R1(n).

moodle.yorku.ca EECS 1030 18 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that R1(n) = 6n + 6 and
6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50. R1 is not at least as
good as R3.

Proof

We have to show that

∀F > 0 : ∃n ≥ 0 : R1(n) > F × R3(n)

Let F > 0. Pick n = 2F+10. Then

R1(n) = 6n + 6

= 6× 2F+10 + 6

> F × (11(log2(2F+10 + 2) + 50)

= F × (11 log2(n + 2) + 50)

≥ F × R3(n).

moodle.yorku.ca EECS 1030 19 / 39

moodle.yorku.ca

Running time comparison: first attempt

Claim

Recall that R1(n) = 6n + 6 and
6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50. R1 is not at least as
good as R3.

Proof

We have to show that

∀F > 0 : ∃n ≥ 0 : R1(n) > F × R3(n)

Let F > 0. Pick n = 2F+10. Then

R1(n) = 6n + 6

= 6× 2F+10 + 6

> F × (11(log2(2F+10 + 2) + 50)

= F × (11 log2(n + 2) + 50)

≥ F × R3(n).

moodle.yorku.ca EECS 1030 19 / 39

moodle.yorku.ca

Running time comparison: first attempt

Question

I , R1 and R2 are all comparable. What do these functions have in
common?

Answer

They are all linear functions. A function f : N→ N is linear if

∃a > 0 : ∃b ≥ 0 : f (n) = an + b.

Question

What is the “simplest” linear function?

Answer

The function id : N→ N defined by id(n) = n.

moodle.yorku.ca EECS 1030 20 / 39

moodle.yorku.ca

Running time comparison: first attempt

Question

I , R1 and R2 are all comparable. What do these functions have in
common?

Answer

They are all linear functions. A function f : N→ N is linear if

∃a > 0 : ∃b ≥ 0 : f (n) = an + b.

Question

What is the “simplest” linear function?

Answer

The function id : N→ N defined by id(n) = n.

moodle.yorku.ca EECS 1030 20 / 39

moodle.yorku.ca

Running time comparison: first attempt

Question

I , R1 and R2 are all comparable. What do these functions have in
common?

Answer

They are all linear functions. A function f : N→ N is linear if

∃a > 0 : ∃b ≥ 0 : f (n) = an + b.

Question

What is the “simplest” linear function?

Answer

The function id : N→ N defined by id(n) = n.

moodle.yorku.ca EECS 1030 20 / 39

moodle.yorku.ca

Running time comparison: first attempt

Question

I , R1 and R2 are all comparable. What do these functions have in
common?

Answer

They are all linear functions. A function f : N→ N is linear if

∃a > 0 : ∃b ≥ 0 : f (n) = an + b.

Question

What is the “simplest” linear function?

Answer

The function id : N→ N defined by id(n) = n.

moodle.yorku.ca EECS 1030 20 / 39

moodle.yorku.ca

Running time comparison: first attempt

Question

Let id(n) = n and R1(n) = 6n + 6. Is R1 at least as good as id?

Answer

No.

Proof

Towards a contradiction, assume that R1 is at least as good as id .
Then

∃F > 0 : ∀n ≥ 0 : R1(n) ≤ F × id(n)

Then 6 = R1(0) ≤ F × id(0) = F × 0 = 0. Since it is not the case
that 6 ≤ 0, we have reached a contradiction.

moodle.yorku.ca EECS 1030 21 / 39

moodle.yorku.ca

Running time comparison: first attempt

Question

Let id(n) = n and R1(n) = 6n + 6. Is R1 at least as good as id?

Answer

No.

Proof

Towards a contradiction, assume that R1 is at least as good as id .
Then

∃F > 0 : ∀n ≥ 0 : R1(n) ≤ F × id(n)

Then 6 = R1(0) ≤ F × id(0) = F × 0 = 0. Since it is not the case
that 6 ≤ 0, we have reached a contradiction.

moodle.yorku.ca EECS 1030 21 / 39

moodle.yorku.ca

Running time comparison: first attempt

Question

Let id(n) = n and R1(n) = 6n + 6. Is R1 at least as good as id?

Answer

No.

Proof

Towards a contradiction, assume that R1 is at least as good as id .
Then

∃F > 0 : ∀n ≥ 0 : R1(n) ≤ F × id(n)

Then 6 = R1(0) ≤ F × id(0) = F × 0 = 0. Since it is not the case
that 6 ≤ 0, we have reached a contradiction.

moodle.yorku.ca EECS 1030 21 / 39

moodle.yorku.ca

Running time comparison: second attempt

Definition

Let f : N→ N and g : N→ N estimate the number of elementary
instructions executed by two algorithms. We say that f is at least
as good as g , denoted f ∈ O(g), if

there exists a M ≥ 0, there exists a F > 0,
such that for all n ≥ M, f (n) ≤ F × g(n)

Notation

Instead of

there exists a M ≥ 0, there exists a F > 0,
such that for all n ≥ M, f (n) ≤ F × g(n)

we write

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : f (n) ≤ F × g(n)

moodle.yorku.ca EECS 1030 22 / 39

moodle.yorku.ca

Running time comparison: second attempt

Definition

Let f : N→ N and g : N→ N estimate the number of elementary
instructions executed by two algorithms. We say that f is at least
as good as g , denoted f ∈ O(g), if

there exists a M ≥ 0, there exists a F > 0,
such that for all n ≥ M, f (n) ≤ F × g(n)

Notation

Instead of

there exists a M ≥ 0, there exists a F > 0,
such that for all n ≥ M, f (n) ≤ F × g(n)

we write

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : f (n) ≤ F × g(n)

moodle.yorku.ca EECS 1030 22 / 39

moodle.yorku.ca

Running time comparison: second attempt

Claim

Recall that I = 12n + 2 and R1(n) = 6n + 6. I ∈ O(R1).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : I (n) ≤ F × R1(n)

We pick M = 0 and F = 2. Let n ≥ M. Then

I (n) = 12n + 2

≤ 12n + 12

= 2× (6n + 6)

= F × R1(n).

moodle.yorku.ca EECS 1030 23 / 39

moodle.yorku.ca

Running time comparison: second attempt

Claim

Recall that I = 12n + 2 and R1(n) = 6n + 6. I ∈ O(R1).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : I (n) ≤ F × R1(n)

We pick M = 0 and F = 2. Let n ≥ M. Then

I (n) = 12n + 2

≤ 12n + 12

= 2× (6n + 6)

= F × R1(n).

moodle.yorku.ca EECS 1030 23 / 39

moodle.yorku.ca

Running time comparison: second attempt

Claim

Recall that R1(n) = 6n + 6 and id(n) = n. R1 ∈ O(id).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : R1(n) ≤ F × id(n)

We pick M = 6 and F = 7. Let n ≥ M. Then

R1(n) = 6n + 6

≤ 6n + n

= 7n

= 7× id(n).

moodle.yorku.ca EECS 1030 24 / 39

moodle.yorku.ca

Running time comparison: second attempt

Claim

Recall that R1(n) = 6n + 6 and id(n) = n. R1 ∈ O(id).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : R1(n) ≤ F × id(n)

We pick M = 6 and F = 7. Let n ≥ M. Then

R1(n) = 6n + 6

≤ 6n + n

= 7n

= 7× id(n).

moodle.yorku.ca EECS 1030 24 / 39

moodle.yorku.ca

Big-O notation

Let f : N→ N be defined by f (n) = n. Instead of O(f) we write
O(n).

Let g : N→ N be defined by g(n) = log2(n). Instead of O(g) we
write O(log2(n)).

Let h : N→ N be defined by h(n) = n2. Instead of O(h) we write
O(n2).

moodle.yorku.ca EECS 1030 25 / 39

moodle.yorku.ca

Running time comparison: second attempt

Claim

Recall 6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50.
R3 ∈ O(log2(n)).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : R3(n) ≤ F × log2(n)

Pick M = 2 and F = 100. Let n ≥ M. Then

R3(n) ≤ 11 log2(n + 2) + 50

≤ 100× log2(n)

= F × log2(n).

moodle.yorku.ca EECS 1030 26 / 39

moodle.yorku.ca

Running time comparison: second attempt

Claim

Recall 6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50.
R3 ∈ O(log2(n)).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : R3(n) ≤ F × log2(n)

Pick M = 2 and F = 100. Let n ≥ M. Then

R3(n) ≤ 11 log2(n + 2) + 50

≤ 100× log2(n)

= F × log2(n).

moodle.yorku.ca EECS 1030 26 / 39

moodle.yorku.ca

Big-O notation: terminology

O(1) constant
O(log(n)) logarithmic
O(n) linear
O(n log(n)) linearithmic
O(n2) quadratic
O(2n) exponential

moodle.yorku.ca EECS 1030 27 / 39

moodle.yorku.ca

Big-O notation

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10

O(1)

O(log(n))

O(n)

O(n log(n))

O(n²)

O(2ⁿ)

moodle.yorku.ca EECS 1030 28 / 39

moodle.yorku.ca

Powers of 3

I , R1, R2 ∈ O(n)

R3 ∈ O(log(n))

moodle.yorku.ca EECS 1030 29 / 39

moodle.yorku.ca

Powers of 3

Claim

Recall 6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50. R3 ∈ O(n).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : R3(n) ≤ F × n

Pick M = 2 and F = 100. Let n ≥ M. Then

R3(n) ≤ 11 log2(n + 2) + 50

≤ 100× n

= F × n.

moodle.yorku.ca EECS 1030 30 / 39

moodle.yorku.ca

Powers of 3

Claim

Recall 6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50. R3 ∈ O(n).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : R3(n) ≤ F × n

Pick M = 2 and F = 100. Let n ≥ M. Then

R3(n) ≤ 11 log2(n + 2) + 50

≤ 100× n

= F × n.

moodle.yorku.ca EECS 1030 30 / 39

moodle.yorku.ca

Powers of 3

Claim

Recall 6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50. R3 ∈ O(n2).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : R3(n) ≤ F × n2

Pick M = 2 and F = 100. Let n ≥ M. Then

R3(n) ≤ 11 log2(n + 2) + 50

≤ 100× n2

= F × n.

moodle.yorku.ca EECS 1030 31 / 39

moodle.yorku.ca

Powers of 3

Claim

Recall 6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50. R3 ∈ O(n2).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : R3(n) ≤ F × n2

Pick M = 2 and F = 100. Let n ≥ M. Then

R3(n) ≤ 11 log2(n + 2) + 50

≤ 100× n2

= F × n.

moodle.yorku.ca EECS 1030 31 / 39

moodle.yorku.ca

Big-Theta notation

Definition

Let f : N→ N and g : N→ N estimate the number of elementary
instructions executed by two algorithms. We say that f is as good
as g , denoted f ∈ Θ(g), if

f ∈ O(g) and g ∈ O(f).

moodle.yorku.ca EECS 1030 32 / 39

moodle.yorku.ca

Running time comparison

Claim

Recall 6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50.
log2(n) ∈ O(R3).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : log2(n) ≤ F × R3(n)

Pick M = 0 and F = 1. Let n ≥ M. Then

log2(n) ≤ 11 log2(n + 2) + 50

= F × R3(n).

moodle.yorku.ca EECS 1030 33 / 39

moodle.yorku.ca

Running time comparison

Claim

Recall 6 log2(n + 2) ≤ R3(n) ≤ 11 log2(n + 2) + 50.
log2(n) ∈ O(R3).

Proof

We have to show that

∃M ≥ 0 : ∃F > 0 : ∀n ≥ M : log2(n) ≤ F × R3(n)

Pick M = 0 and F = 1. Let n ≥ M. Then

log2(n) ≤ 11 log2(n + 2) + 50

= F × R3(n).

moodle.yorku.ca EECS 1030 33 / 39

moodle.yorku.ca

Big-Theta notation

Claim

R3 ∈ Θ(log2(n)).

Proof

Since we have already shown that R3 ∈ O(log2(n)) and
log2(n) ∈ O(R3), we can conclude that R3 ∈ Θ(log2(n)).

Claim

I , R1, R2 ∈ Θ(n).

moodle.yorku.ca EECS 1030 34 / 39

moodle.yorku.ca

Big-Theta notation

Claim

R3 ∈ Θ(log2(n)).

Proof

Since we have already shown that R3 ∈ O(log2(n)) and
log2(n) ∈ O(R3), we can conclude that R3 ∈ Θ(log2(n)).

Claim

I , R1, R2 ∈ Θ(n).

moodle.yorku.ca EECS 1030 34 / 39

moodle.yorku.ca

Big-Theta notation

Claim

R3 ∈ Θ(log2(n)).

Proof

Since we have already shown that R3 ∈ O(log2(n)) and
log2(n) ∈ O(R3), we can conclude that R3 ∈ Θ(log2(n)).

Claim

I , R1, R2 ∈ Θ(n).

moodle.yorku.ca EECS 1030 34 / 39

moodle.yorku.ca

Powers of 3

Question

If you have to calculate some power(s) of 3, which algorithm would
you use?

Answer

This depends on the value(s) of n for which you have to compute
pow3(n).

moodle.yorku.ca EECS 1030 35 / 39

moodle.yorku.ca

Powers of 3

Question

If you have to calculate some power(s) of 3, which algorithm would
you use?

Answer

This depends on the value(s) of n for which you have to compute
pow3(n).

moodle.yorku.ca EECS 1030 35 / 39

moodle.yorku.ca

Powers of 3

Question

If you have to calculate pow3(4), which algorithm would you use?

Answer

None. Just use 81.

moodle.yorku.ca EECS 1030 36 / 39

moodle.yorku.ca

Powers of 3

Question

If you have to calculate pow3(4), which algorithm would you use?

Answer

None. Just use 81.

moodle.yorku.ca EECS 1030 36 / 39

moodle.yorku.ca

Powers of 3

Question

If you have to calculate many pow3(n) in the range 0 ≤ n ≤ 100,
which algorithm would you use?

Answer

Use a simple algorithm such as I or R1 to compute pow3(n) for all
0 ≤ n ≤ 100 and store them in a map.

moodle.yorku.ca EECS 1030 37 / 39

moodle.yorku.ca

Powers of 3

Question

If you have to calculate many pow3(n) in the range 0 ≤ n ≤ 100,
which algorithm would you use?

Answer

Use a simple algorithm such as I or R1 to compute pow3(n) for all
0 ≤ n ≤ 100 and store them in a map.

moodle.yorku.ca EECS 1030 37 / 39

moodle.yorku.ca

Powers of 3

private final static Map<Integer, BigInteger> pow3 =
new HashMap<Integer, BigInteger>();

static
{

BigInteger power = BigInteger.ONE;
for (int i = 0; i <= 100; i++)
{

pow3.put(i, power);
power = power.multiply(THREE);

}
}

public static BigInteger pow3(int n)
{

return pow3.get(n);
}

moodle.yorku.ca EECS 1030 38 / 39

moodle.yorku.ca

Powers of 3

Question

If you have to calculate pow3(n) for large values of n, which
algorithm would you use?

Answer

Use R3.

moodle.yorku.ca EECS 1030 39 / 39

moodle.yorku.ca

Powers of 3

Question

If you have to calculate pow3(n) for large values of n, which
algorithm would you use?

Answer

Use R3.

moodle.yorku.ca EECS 1030 39 / 39

moodle.yorku.ca

