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/*x
* Returns 3 raised to the given power.
*
* @param n a number.
* @pre. n >= 0
*/
public static BigInteger pow3(int n)
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Powers of 3: Iteration

BigInteger power = Biglnteger.ONE;
for (int 1 = 0; i < n; i++)
{

power = power.multiply(THREE) ;
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Powers of 3: Recursion — version 1

BigInteger power;
if (n == 0)
{

power = Biglnteger.ONE;
b

else

{

power = pow3(n - 1).multiply(THREE);
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Powers of 3: Recursion — version 2

BigInteger power;
if (n == 0)
{
power = BigInteger.ONE;
b
else if (n % 2 == 1)
{

power = pow3(n - 1).multiply(THREE);
}

else

{

power = pow3(n / 2).multiply(pow3(n / 2));
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Powers of 3: Recursion — version 3

BigInteger power;

if (n == 0)
{
power = BigInteger.ONE;
}
else if (n % 2 == 1)
{
power = pow3(n - 1).multiply(THREE);
}
else
{
BigInteger temp = power(n / 2);
power = temp.multiply(temp);
}
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Experimental comparison

Time to compute pow3(n) in nanoseconds
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Estimating the number of elementary actions

I(n) =12n+2
Ri(0) =6 -
Ruln) = Ra(n— 1) + 6} Ru(n) = 6n+6

6
<
Ro(n) = Ry(n—1)+11 if nis odd gzgzg - ﬁ: 12
2T 2Ra(n/2)+11 ifniseven) 2V =
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R3(n/2)+11 ifniseven) 2\ = 52
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Theoretical comparison

Time to compute pow3(n) in elementary instructions
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Theoretical comparison

Time to compute pow3(n) in elementary instructions
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But those are just estimates ...

| estimate

R(n)=14n+7

and you estimate
R(n) =12n+ 38

How can these estimates be of any use?

400
/ 14n+7
300
/ ——12n+38
200 /
100
0
0 10 20 30 40 50 60

moodle.yorku.ca EECS 1030 11/39


moodle.yorku.ca

But those are just estimates ...

To compare different algorithms we are only interested in the
shape of the graphs, not the actual numbers.
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Running time comparison: first attempt

Definition

Let f : N — N and g : N — N estimate the number of elementary
instructions executed by two algorithms. We say that f is? at least
as good as g if

there exists a F > 0, such that for all n >0, f(n) < F x g(n)

xxxxx

“Instead of “is”, “scales” might be even a better word here.
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Running time comparison: first attempt

Definition

Let f : N — N and g : N — N estimate the number of elementary
instructions executed by two algorithms. We say that f is? at least
as good as g if

there exists a F > 0, such that for all n >0, f(n) < F x g(n)

xxxxx

“Instead of “is”, “scales” might be even a better word here.

Notation
Instead of

there exists a F > 0, such that for all n > 0,f(n) < F x g(n)

we write

JF>0:Yn>0:f(n) < F xg(n)

v
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Running time comparison: first attempt

Recall that /(n) = 12n+2 and Ry(n) =6n+6. [ is at least as
good as Rj.
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Running time comparison: first attempt

Recall that /(n) = 12n+ 2 and Ry(n) = 6n+ 6. [ is at least as
good as Rj.

We have to show that

JF>0:Yn>0:1(n) <F x Ry(n)
We pick F =2. Let n > 0. Then

I(n) 12n+2
12n + 12
2 x (6n + 6)

F x R]_(n).

IIA
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Running time comparison: first attempt

Recall that /(n) = 12n+ 2 and Ri(n) = 6n+ 6. Ry is at least as
good as /.
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Running time comparison: first attempt

Recall that /(n) = 12n+ 2 and Ry(n) = 6n+ 6. Ry is at least as
good as /.

We have to show that

JF>0:Yn>0: Ri(n) <F xI(n)
We pick F = 3. Let n > 0. Then

Ri(n) = 6n+6
36n+6

3 x(12n+2)
F x I(n).

VA

<
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Running time comparison: first attempt

Recall that Ry(n) =6n+6 and 11n+6 < Ry(n) <28n+6. Ry is
at least as good as R».
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Running time comparison: first attempt

Recall that Ri(n) = 6n+6 and 11n+6 < Ra(n) <28n+6. Ry is
at least as good as R».

We have to show that

JF >0:Yn>0: Ri(n) < F x Ra(n)

We pick F = 1. Let n > 0. Then

6n+6
11n+6

1x (11n+6)
F x Ry(n).

Rl(n)
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Running time comparison: first attempt

Recall that Ry(n) =6n+6 and 11n+6 < Ry(n) <28n+6. Ry is
at least as good as R;.
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Running time comparison: first attempt

Recall that Ri(n) = 6n+6 and 11n+6 < Rx(n) <28n+6. Ry is
at least as good as R;.

We have to show that

IF >0:VYn>0: Ry(n) < F x Ri(n)
We pick F =5. Let n > 0. Then

28n+6
30n + 30
5% (6n+ 6)
F x Ri(n).

Rg(n)

IA
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<
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Running time comparison: first attempt

Recall that Ry(n) = 6n+ 6 and
6logy(n+2) < R3(n) < 1llogy(n+2)+50. R3 is at least as good
as Rj.
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Running time comparison: first attempt

Recall that Ry(n) = 6n+ 6 and
6logo(n+2) < R3(n) < 11llogy(n+2)+50. Rs is at least as good
as Rj.

We have to show that

dF >0:Yn>0: R3(n) < F x Ri(n)
We pick F =11. Let n > 0. Then

Rs3(n) 11logy(n + 2) + 50
66n + 66
11 x (6n+6)

F x Rl(n).
”
18739
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Running time comparison: first attempt

Recall that Ry(n) = 6n+ 6 and
6log,(n+2) < R3(n) < 1llogy(n+2) 4+ 50. Ry is not at least as
good as Rjs.

moodle.yorku.ca EECS 1030 19/39


moodle.yorku.ca

Running time comparison: first attempt

Claim
Recall that Ry(n) = 6n+ 6 and

6log,(n+2) < R3(n) < 1llogy(n+2) 4+ 50. Ry is not at least as
good as Rjs.

Proof
We have to show that

VF >0:3n>0: Ri(n) > F x R3(n)
Let F > 0. Pick n = 2F*10. Then

Ri(n) = 6n+6
— 6x 2F+10 46
F x (11(log, (270 + 2) + 50)
F x (11logy(n + 2) + 50)
F x R3(n).
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Running time comparison: first attempt

I, Ry and R» are all comparable. What do these functions have in
common?
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Running time comparison: first attempt

I, Ry and R» are all comparable. What do these functions have in
common? |

Answer

They are all linear functions. A function f : N — N is linear if

Jda>0:3b>0:f(n)=an+ b.
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Running time comparison: first attempt

I, Ry and R» are all comparable. What do these functions have in
common?

v

Answer

They are all linear functions. A function f : N — N is linear if

Jda>0:3b>0:f(n)=an+ b.

What is the “simplest” linear function?
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Running time comparison: first attempt

I, Ry and R» are all comparable. What do these functions have in
common?

v

Answer

They are all linear functions. A function f : N — N is linear if

Jda>0:3b>0:f(n)=an+ b.

What is the “simplest” linear function?

The function id : N — N defined by id(n) = n.
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Running time comparison: first attempt

Let id(n) = n and Ry(n) =6n+6. Is R; at least as good as id?
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Running time comparison: first attempt

Let id(n) = n and Ry(n) =6n+6. Is R; at least as good as id?

_
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Running time comparison: first attempt

Let id(n) = n and Ry(n) =6n+6. Is R; at least as good as id?

_

Towards a contradiction, assume that R; is at least as good as id.
Then

IF >0:Yn>0: Ry(n) <F xid(n)

Then 6 = R1(0) < F x id(0) = F x 0 =0. Since it is not the case
that 6 < 0, we have reached a contradiction.
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Running time comparison: second attempt

Definition

Let f : N — N and g : N — N estimate the number of elementary
instructions executed by two algorithms. We say that f is at least
as good as g, denoted f € O(g), if

there exists a M > 0, there exists a F > 0,
such that for all n > M, f(n) < F x g(n)
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Running time comparison: second attempt

Definition

Let f : N — N and g : N — N estimate the number of elementary
instructions executed by two algorithms. We say that f is at least
as good as g, denoted f € O(g), if

there exists a M > 0, there exists a F > 0,
such that for all n > M, f(n) < F x g(n)

| \

Notation
Instead of
there exists a M > 0, there exists a F > 0,
such that for all n > M, f(n) < F x g(n)
we write

AM>0:3F >0:Vn> M: f(n) < F x g(n)
38
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Running time comparison: second attempt

Recall that / =12n+2 and Ri(n) =6n+6. | € O(Ry).
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Running time comparison: second attempt

Recall that / =12n+2 and Ri(n) =6n+6. | € O(Ry).

We have to show that

dM >0:3F >0:Vn>M:I(n) <F x Ri(n)
We pick M =0and F =2. Let n > M. Then

I(n) = 12n+2
12n + 12

2 x (6n+6)
F x Ri(n).

IN
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Running time comparison: second attempt

Recall that Ry(n) = 6n+ 6 and id(n) = n. Ry € O(id).
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Running time comparison: second attempt

Recall that Ry(n) = 6n+ 6 and id(n) = n. Ry € O(id).

We have to show that

dM>0:3F >0:Vn>M: Ri(n) < F xid(n)
We pick M =6 and F =7. Let n > M. Then

Ri(n) = 6n+6
6n-+n
n

7 x id(n).

IN
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Big-O notation

Let f : N — N be defined by f(n) = n. Instead of O(f) we write
O(n).

Let g : N — N be defined by g(n) = log,(n). Instead of O(g) we
write O(log,(n)).

Let h: N — N be defined by h(n) = n?. Instead of O(h) we write
Oo(n?).
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Running time comparison: second attempt

Recall 6log,(n + 2) < R3(n) < 11logy(n + 2) + 50.
Rz € O(log,(n)).
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Running time comparison: second attempt

Recall 6log,(n + 2) < R3(n) < 11logy(n + 2) + 50.
R3 € O(logy(n)).

We have to show that

AM>0:3F >0:VYn> M : R3(n) < F X logy(n)
Pick M =2 and F = 100. Let n > M. Then

R3(n) 11logy(n+ 2) + 50
100 x log,(n)

= F X logy(n).

<
<
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Big-O notation: terminology

0(1) constant
O(log(n))  logarithmic
O(n) linear
O(nlog(n)) linearithmic
O(n?) quadratic
o(27) exponential
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20

|/ -
// / ——0(log(n))

10 ~=0(n)
// / ——0(n log(n))

8 ——0(n%)

// =
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o/, R, R, € O(n)
e R3 € O(log(n))
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Recall 6logy(n + 2) < R3(n) < 11llogy(n+2)+50. Rz € O(n).
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Recall 6logy(n + 2) < R3(n) < 11llogy(n+2)+50. Rz € O(n).

We have to show that

IM>0:3F>0:Vn>M: R3(n) < Fxn
Pick M =2 and F = 100. Let n > M. Then

Rs3(n) 11logy(n+2) + 50
100 x n

= Fxn.

<
<
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Recall 6log,(n +2) < R3(n) < 11log,(n+2) 4+ 50. Rz € O(n?).
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Recall 6log,(n +2) < R3(n) < 11log,(n+2) 4+ 50. Rz € O(n?).

We have to show that

IM>0:3F>0:Yn>M: Rs(n) < F x n?
Pick M =2 and F = 100. Let n > M. Then

R3(n) 11log,(n + 2) + 50
100 x n?

= Fxn.

<
<

moodle.yorku.ca EECS 1030 31/39


moodle.yorku.ca

Big- Theta notation

Definition

Let f : N — N and g : N — N estimate the number of elementary
instructions executed by two algorithms. We say that f is as good
as g, denoted f € ©(g), if

f € O(g) and g € O(f).
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Running time comparison

Recall 6log,(n + 2) < R3(n) < 11log,(n + 2) + 50.
log,(n) € O(Rs).
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Running time comparison

Recall 6log,(n + 2) < R3(n) < 11log,(n + 2) + 50.
loga(n) € O(Rs).

We have to show that

dM >0:3F >0:Vn> M :log,(n) < F x R3(n)
Pick M=0and F=1. Let n > M. Then

logo(n) < 1llogy(n+2)+50
= Fx R3(n).
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Big- Theta notation

R3 € ©(log,(n)).
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Big- Theta notation

R3 € ©(logy(n)).

Since we have already shown that R3 € O(log,(n)) and
log>(n) € O(R3), we can conclude that R3 € ©(log,(n)).
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Big- Theta notation

R3 € ©(logy(n)).

Since we have already shown that R3 € O(log,(n)) and
log>(n) € O(R3), we can conclude that R3 € ©(log,(n)).

I, Ry, Ry € ©(n).
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If you have to calculate some power(s) of 3, which algorithm would
you use?
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Powers of 3

Question

If you have to calculate some power(s) of 3, which algorithm would
you use?

Answer

| A

This depends on the value(s) of n for which you have to compute
pow3(n).
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If you have to calculate pow3(4), which algorithm would you use?
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If you have to calculate pow3(4), which algorithm would you use?

None. Just use 81. \
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If you have to calculate many pow3(n) in the range 0 < n < 100,
which algorithm would you use?
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Powers of 3

Question

If you have to calculate many pow3(n) in the range 0 < n < 100,
which algorithm would you use?

| A

Answer

Use a simple algorithm such as / or Ry to compute pow3(n) for all
0 < n <100 and store them in a map.
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private final static Map<Integer, Biglnteger> pow3 =
new HashMap<Integer, BigInteger>();

static

{
BigInteger power = Biglnteger.ONE;
for (int i = 0; i <= 100; i++)

{
pow3.put (i, power);
power = power.multiply(THREE) ;
}
}
public static BigInteger pow3(int n)
{
return pow3.get(n);
}
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If you have to calculate pow3(n) for large values of n, which
algorithm would you use?
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If you have to calculate pow3(n) for large values of n, which
algorithm would you use?

Use Rjs.
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