Chapter 7: Recursion EECS 1030

moodle.yorku.ca

/**

```
* Returns 3 raised to the given power.
```

*

```
* Oparam n a number.
```

```
* @pre. n >= 0
```

*/

public static BigInteger pow3(int n)

< ∃ →

```
BigInteger power = BigInteger.ONE;
for (int i = 0; i < n; i++)
{
    power = power.multiply(THREE);
}
```

-∢ ≣ ▶

```
BigInteger power;
if (n == 0)
{
    power = BigInteger.ONE;
}
else
{
    power = pow3(n - 1).multiply(THREE);
}
```

```
BigInteger power;
if (n == 0)
ł
   power = BigInteger.ONE;
}
else if (n % 2 == 1)
ł
   power = pow3(n - 1).multiply(THREE);
}
else
ł
   power = pow3(n / 2).multiply(pow3(n / 2));
}
```

```
BigInteger power;
if (n == 0)
{
   power = BigInteger.ONE;
}
else if (n % 2 == 1)
ł
   power = pow3(n - 1).multiply(THREE);
}
else
{
   BigInteger temp = power(n / 2);
   power = temp.multiply(temp);
}
```

Experimental comparison

.⊒ →

A ►

Estimating the number of elementary actions

$$I(n) = 12n + 2$$

$$R_1(0) = 6 R_1(n) = R_1(n-1) + 6 \\ R_1(n) = 6n + 6$$

$$R_{2}(0) = 6$$

$$R_{2}(n) = \left\{ \begin{array}{c} R_{2}(n-1) + 11 & \text{if } n \text{ is odd} \\ 2R_{2}(n/2) + 11 & \text{if } n \text{ is even} \end{array} \right\} R_{2}(n) \le 28n + 6$$

$$R_{2}(n) \ge 11n + 6$$

$$R_{3}(0) = 6$$

$$R_{3}(n) = \begin{cases} R_{3}(n-1) + 11 & \text{if } n \text{ is odd} \\ R_{3}(n/2) + 11 & \text{if } n \text{ is even} \end{cases} R_{3}(n) \le 11 \log_{2}(n+2) + 50$$

$$R_{3}(n) \ge 6 \log_{2}(n+2)$$

-ৰ ≣ ≯

Theoretical comparison

.⊒ →

A ►

Theoretical comparison

But those are just estimates ...

Question

I estimate

$$R(n)=14n+7$$

and you estimate

$$R(n)=12n+38$$

How can these estimates be of any use?

< ∃ >

Answer

To compare different algorithms we are only interested in the shape of the graphs, not the actual numbers.

∍ .

Definition

Let $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ estimate the number of elementary instructions executed by two algorithms. We say that f is^a at least as good as g if

there exists a F > 0, such that for all $n \ge 0$, $f(n) \le F \times g(n)$

alnstead of "is", "scales" might be even a better word here.

Definition

Let $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ estimate the number of elementary instructions executed by two algorithms. We say that f is^a at least as good as g if

there exists a F > 0, such that for all $n \ge 0$, $f(n) \le F \times g(n)$

alnstead of "is", "scales" might be even a better word here.

Notation

Instead of

there exists a F > 0, such that for all $n \ge 0$, $f(n) \le F \times g(n)$

we write

$$\exists F > 0 : \forall n \ge 0 : f(n) \le F \times g(n)$$

Claim

Recall that I(n) = 12n + 2 and $R_1(n) = 6n + 6$. I is at least as good as R_1 .

Claim

Recall that I(n) = 12n + 2 and $R_1(n) = 6n + 6$. I is at least as good as R_1 .

Proof

We have to show that

$$\exists F > 0 : \forall n \ge 0 : I(n) \le F \times R_1(n)$$

We pick F = 2. Let $n \ge 0$. Then

$$I(n) = 12n + 2
\leq 12n + 12
= 2 \times (6n + 6)
= F \times R_1(n).$$

∃ ► < ∃ ►</p>

< (□)

Claim

Recall that I(n) = 12n + 2 and $R_1(n) = 6n + 6$. R_1 is at least as good as I.

Claim

Recall that I(n) = 12n + 2 and $R_1(n) = 6n + 6$. R_1 is at least as good as I.

Proof

We have to show that

$$\exists F > 0 : \forall n \geq 0 : R_1(n) \leq F \times I(n)$$

We pick F = 3. Let $n \ge 0$. Then

$$R_1(n) = 6n + 6 \leq 36n + 6 = 3 \times (12n + 2) = F \times I(n).$$

∃ ► < ∃ ►</p>

< (□)

Claim

Recall that $R_1(n) = 6n + 6$ and $11n + 6 \le R_2(n) \le 28n + 6$. R_1 is at least as good as R_2 .

Claim

Recall that $R_1(n) = 6n + 6$ and $11n + 6 \le R_2(n) \le 28n + 6$. R_1 is at least as good as R_2 .

Proof

We have to show that

$$\exists F > 0 : \forall n \ge 0 : R_1(n) \le F \times R_2(n)$$

We pick F = 1. Let $n \ge 0$. Then

$$\begin{array}{rcl} R_1(n) &=& 6n+6\\ &\leq& 11n+6\\ &=& 1\times(11n+6)\\ &\leq& F\times R_2(n). \end{array}$$

∃ ► < ∃ ►</p>

< 17 ▶

Claim

Recall that $R_1(n) = 6n + 6$ and $11n + 6 \le R_2(n) \le 28n + 6$. R_2 is at least as good as R_1 .

Claim

Recall that $R_1(n) = 6n + 6$ and $11n + 6 \le R_2(n) \le 28n + 6$. R_2 is at least as good as R_1 .

Proof

We have to show that

$$\exists F > 0 : \forall n \geq 0 : R_2(n) \leq F \times R_1(n)$$

We pick F = 5. Let $n \ge 0$. Then

$$\begin{array}{rcl} R_2(n) &=& 28n+6\\ &\leq& 30n+30\\ &=& 5\times(6n+6)\\ &\leq& F\times R_1(n). \end{array}$$

< (□)

글 > : < 글 >

Claim

Recall that $R_1(n) = 6n + 6$ and $6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$. R_3 is at least as good as R_1 .

Claim

Recall that $R_1(n) = 6n + 6$ and $6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$. R_3 is at least as good as R_1 .

Proof

We have to show that

$$\exists F > 0 : \forall n \ge 0 : R_3(n) \le F \times R_1(n)$$

We pick F = 11. Let $n \ge 0$. Then

$$\begin{array}{rcl} R_3(n) & \leq & 11 \log_2(n+2) + 50 \\ & \leq & 66n + 66 \\ & = & 11 \times (6n + 6) \\ & \leq & F \times R_1(n). \end{array}$$

Claim

Recall that $R_1(n) = 6n + 6$ and $6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$. R_1 is not at least as good as R_3 .

Claim

Recall that $R_1(n) = 6n + 6$ and $6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$. R_1 is not at least as good as R_3 .

Proof

We have to show that

$$\forall F > 0 : \exists n \ge 0 : R_1(n) > F \times R_3(n)$$

Let F > 0. Pick $n = 2^{F+10}$. Then

$$R_{1}(n) = 6n + 6$$

= $6 \times 2^{F+10} + 6$
> $F \times (11(\log_{2}(2^{F+10} + 2) + 50))$
= $F \times (11 \log_{2}(n + 2) + 50)$
 $\geq F \times R_{3}(n).$

I, R_1 and R_2 are all comparable. What do these functions have in common?

.⊒ →

I, R_1 and R_2 are all comparable. What do these functions have in common?

Answer

They are all linear functions. A function $f : \mathbb{N} \to \mathbb{N}$ is linear if

 $\exists a > 0 : \exists b \ge 0 : f(n) = an + b.$

I, R_1 and R_2 are all comparable. What do these functions have in common?

Answer

They are all linear functions. A function $f : \mathbb{N} \to \mathbb{N}$ is linear if

$$\exists a > 0 : \exists b \ge 0 : f(n) = an + b.$$

Question

What is the "simplest" linear function?

I, R_1 and R_2 are all comparable. What do these functions have in common?

Answer

They are all linear functions. A function $f : \mathbb{N} \to \mathbb{N}$ is linear if

$$\exists a > 0 : \exists b \ge 0 : f(n) = an + b.$$

Question

What is the "simplest" linear function?

Answer

The function $id : \mathbb{N} \to \mathbb{N}$ defined by id(n) = n.

Question

Let
$$id(n) = n$$
 and $R_1(n) = 6n + 6$. Is R_1 at least as good as id ?

Question

Let
$$id(n) = n$$
 and $R_1(n) = 6n + 6$. Is R_1 at least as good as id ?

Answer

No.

-≣⇒

A ►

Let
$$id(n) = n$$
 and $R_1(n) = 6n + 6$. Is R_1 at least as good as id ?

Answer	
No.	

Proof

Towards a contradiction, assume that R_1 is at least as good as *id*. Then

$$\exists F > 0 : \forall n \ge 0 : R_1(n) \le F \times id(n)$$

Then $6 = R_1(0) \le F \times id(0) = F \times 0 = 0$. Since it is not the case that $6 \le 0$, we have reached a contradiction.

Running time comparison: second attempt

Definition

Let $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ estimate the number of elementary instructions executed by two algorithms. We say that f is at least as good as g, denoted $f \in O(g)$, if

there exists a $M \ge 0$, there exists a F > 0, such that for all $n \ge M$, $f(n) \le F \times g(n)$

Running time comparison: second attempt

Definition

Let $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ estimate the number of elementary instructions executed by two algorithms. We say that f is at least as good as g, denoted $f \in O(g)$, if

there exists a $M \ge 0$, there exists a F > 0, such that for all $n \ge M$, $f(n) \le F \times g(n)$

Notation

Instead of

there exists a $M \ge 0$, there exists a F > 0, such that for all $n \ge M$, $f(n) \le F \times g(n)$

we write

$$\exists M \geq 0 : \exists F > 0 : \forall n \geq M : f(n) \leq F \times g(n)$$

Running time comparison: second attempt

Claim

Recall that I = 12n + 2 and $R_1(n) = 6n + 6$. $I \in O(R_1)$.

·≣ ► < ≣ ►

Running time comparison: second attempt

Claim

Recall that
$$I = 12n + 2$$
 and $R_1(n) = 6n + 6$. $I \in O(R_1)$.

Proof

We have to show that

$$\exists M \geq 0 : \exists F > 0 : \forall n \geq M : I(n) \leq F \times R_1(n)$$

We pick M = 0 and F = 2. Let $n \ge M$. Then

$$\begin{split} I(n) &= 12n+2 \\ &\leq 12n+12 \\ &= 2 \times (6n+6) \\ &= F \times R_1(n). \end{split}$$

Running time comparison: second attempt

Claim

Recall that
$$R_1(n) = 6n + 6$$
 and $id(n) = n$. $R_1 \in O(id)$.

<-≣⇒

Running time comparison: second attempt

Claim

Recall that
$$R_1(n) = 6n + 6$$
 and $id(n) = n$. $R_1 \in O(id)$.

Proof

We have to show that

$$\exists M \geq 0 : \exists F > 0 : \forall n \geq M : R_1(n) \leq F \times id(n)$$

We pick M = 6 and F = 7. Let $n \ge M$. Then

$$R_1(n) = 6n + 6$$

$$\leq 6n + n$$

$$= 7n$$

$$= 7 \times id(n)$$

Let $f : \mathbb{N} \to \mathbb{N}$ be defined by f(n) = n. Instead of O(f) we write O(n).

Let $g : \mathbb{N} \to \mathbb{N}$ be defined by $g(n) = \log_2(n)$. Instead of O(g) we write $O(\log_2(n))$.

Let $h : \mathbb{N} \to \mathbb{N}$ be defined by $h(n) = n^2$. Instead of O(h) we write $O(n^2)$.

Recall $6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$. $R_3 \in O(\log_2(n))$.

🗇 🕨 🗶 들 🕨 🦉 🛃

Recall
$$6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$$
.
 $R_3 \in O(\log_2(n))$.

Proof

We have to show that

$$\exists M \geq 0 : \exists F > 0 : \forall n \geq M : R_3(n) \leq F \times \log_2(n)$$

Pick M = 2 and F = 100. Let $n \ge M$. Then

$$\begin{array}{rcl} R_3(n) & \leq & 11 \log_2(n+2) + 50 \\ & \leq & 100 \times \log_2(n) \\ & = & F \times \log_2(n). \end{array}$$

O(1) $O(\log(n))$ O(n) $O(n \log(n))$ $O(n^2)$ $O(2^n)$ constant logarithmic linear linearithmic quadratic exponential

- 《圖》 《문》 《문》

28 / 39

æ

I, *R*₁, *R*₂ ∈ *O*(*n*) *R*₃ ∈ *O*(log(*n*))

→ 《 문 ▶ 《 문 ▶

Recall $6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$. $R_3 \in O(n)$.

《口》《聞》《臣》《臣》

Recall
$$6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$$
. $R_3 \in O(n)$.

Proof

We have to show that

$$\exists M \geq 0 : \exists F > 0 : \forall n \geq M : R_3(n) \leq F \times n$$

Pick M = 2 and F = 100. Let $n \ge M$. Then

$$R_3(n) \leq 11 \log_2(n+2) + 50$$

$$\leq 100 \times n$$

$$= F \times n.$$

æ

・ロト ・聞 と ・ 臣 と ・ 臣 と …

Recall $6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$. $R_3 \in O(n^2)$.

《口》《聞》《臣》《臣》

Recall
$$6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$$
. $R_3 \in O(n^2)$.

Proof

We have to show that

$$\exists M \ge 0 : \exists F > 0 : \forall n \ge M : R_3(n) \le F \times n^2$$

Pick M = 2 and F = 100. Let $n \ge M$. Then

$$R_3(n) \leq 11 \log_2(n+2) + 50$$

$$\leq 100 \times n^2$$

$$= F \times n.$$

æ

・ロト ・聞 と ・ 臣 と ・ 臣 と …

Definition

Let $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ estimate the number of elementary instructions executed by two algorithms. We say that f is as good as g, denoted $f \in \Theta(g)$, if

 $f \in O(g)$ and $g \in O(f)$.

Recall $6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$. $\log_2(n) \in O(R_3)$.

聞き くぼき くぼう

Recall
$$6 \log_2(n+2) \le R_3(n) \le 11 \log_2(n+2) + 50$$
.
 $\log_2(n) \in O(R_3)$.

Proof

We have to show that

$$\exists M \ge 0 : \exists F > 0 : \forall n \ge M : \log_2(n) \le F \times R_3(n)$$

Pick M = 0 and F = 1. Let $n \ge M$. Then

 $\log_2(n) \le 11 \log_2(n+2) + 50$ = $F \times R_3(n).$

∃ >

$$R_3 \in \Theta(\log_2(n)).$$

34 / 39

æ

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト

 $R_3 \in \Theta(\log_2(n)).$

Proof

Since we have already shown that $R_3 \in O(\log_2(n))$ and $\log_2(n) \in O(R_3)$, we can conclude that $R_3 \in \Theta(\log_2(n))$.

▶ ★ Ē ▶ .

∄ ▶ ∢ ∋

 $R_3 \in \Theta(\log_2(n)).$

Proof

Since we have already shown that $R_3 \in O(\log_2(n))$ and $\log_2(n) \in O(R_3)$, we can conclude that $R_3 \in \Theta(\log_2(n))$.

Claim

 $I, R_1, R_2 \in \Theta(n).$

If you have to calculate some power(s) of 3, which algorithm would you use?

If you have to calculate some power(s) of 3, which algorithm would you use?

Answer

This depends on the value(s) of n for which you have to compute pow3(n).

If you have to calculate pow3(4), which algorithm would you use?

_ र ≣ ≯

If you have to calculate pow3(4), which algorithm would you use?

Answer

None. Just use 81.

🗇 🕨 🗶 들 🕨 🦉 🛃

If you have to calculate many pow3(n) in the range $0 \le n \le 100$, which algorithm would you use?

▶ < ∃ >

If you have to calculate many pow3(*n*) in the range $0 \le n \le 100$, which algorithm would you use?

Answer

Use a simple algorithm such as I or R_1 to compute pow3(n) for all $0 \le n \le 100$ and store them in a map.

Powers of 3

private final static Map<Integer, BigInteger> pow3 =
 new HashMap<Integer, BigInteger>();

```
static
{
   BigInteger power = BigInteger.ONE;
   for (int i = 0; i <= 100; i++)
   ſ
       pow3.put(i, power);
       power = power.multiply(THREE);
   }
}
public static BigInteger pow3(int n)
ſ
   return pow3.get(n);
```

If you have to calculate pow3(n) for large values of n, which algorithm would you use?

-∢ ≣ →

If you have to calculate pow3(n) for large values of n, which algorithm would you use?

Answer

Use R₃.

< ∃ >