
Test 4

The fourth test will be 75 minutes, will consist of two parts and
will take place this week.

The programming part will be about Chapter 2-6, excluding
Section 2.6, 4.5, and 6.8.8. You will be asked to implement one
class. We will already provide you with a skeleton which includes
the javadoc. This part will be worth 70% of the marks. If your
code does not compile, you get a 50% penalty (that is, your score
for the programming part will be divided by 2 if your code does not
compile).

The ”written” part will be about Chapter 2-6, excluding Section
2.6, 4.5, and 6.8.8. This part will consist of three questions (two
multiple choice/short answer questions and one longer answer
question). This part will be worth the remaining 30% of the marks.

During the test, you will have access to the textbook. You may
bring a blank piece of paper to the test.

moodle.yorku.ca EECS 1030 1 / 38

moodle.yorku.ca

Chapter 7: Recursion
EECS 1030

moodle.yorku.ca

moodle.yorku.ca EECS 1030 2 / 38

moodle.yorku.ca
moodle.yorku.ca

Powers of 3

/**
* Returns 3 raised to the given power.
*
* @param n a number.
* @pre. n >= 0
*/

public static BigInteger pow3(int n)

moodle.yorku.ca EECS 1030 3 / 38

moodle.yorku.ca

BigInteger

Question

Why is the return type of pow3 the class BigInteger?

Answer

Because 3Integer.MAX VALUE cannot be represented by int or
long.

moodle.yorku.ca EECS 1030 4 / 38

moodle.yorku.ca

BigInteger

Question

Why is the return type of pow3 the class BigInteger?

Answer

Because 3Integer.MAX VALUE cannot be represented by int or
long.

moodle.yorku.ca EECS 1030 4 / 38

moodle.yorku.ca

Powers of 3: Iteration

BigInteger power = BigInteger.ONE;
for (int i = 0; i < n; i++)
{

power = power.multiply(THREE);
}

moodle.yorku.ca EECS 1030 5 / 38

moodle.yorku.ca

Powers of 3: Recursion – version 1

BigInteger power;
if (n == 0)
{

power = BigInteger.ONE;
}
else
{

power = pow3(n - 1).multiply(THREE);
}

moodle.yorku.ca EECS 1030 6 / 38

moodle.yorku.ca

Powers of 3: Recursion – version 2

BigInteger power;
if (n == 0)
{

power = BigInteger.ONE;
}
else if (n % 2 == 1)
{

power = pow3(n - 1).multiply(THREE);
}
else
{

power = pow3(n / 2).multiply(pow3(n / 2));
}

moodle.yorku.ca EECS 1030 7 / 38

moodle.yorku.ca

Powers of 3: Recursion – version 3

BigInteger power;
if (n == 0)
{

power = BigInteger.ONE;
}
else if (n % 2 == 1)
{

power = pow3(n - 1).multiply(THREE);
}
else
{

BigInteger temp = power(n / 2);
power = temp.multiply(temp);

}

moodle.yorku.ca EECS 1030 8 / 38

moodle.yorku.ca

Efficiency

Question

How do we determine which implementation is the most efficient
one?

Answer

Run the implementations and measure their execution times.

moodle.yorku.ca EECS 1030 9 / 38

moodle.yorku.ca

Efficiency

Question

How do we determine which implementation is the most efficient
one?

Answer

Run the implementations and measure their execution times.

moodle.yorku.ca EECS 1030 9 / 38

moodle.yorku.ca

Errors

Question

Why may the following approach give rise relatively large errors in
the measurement of the execution time?

for n = 0, 1, 2, ...
measure the execution time of pow3(n)

Answer

Because the execution time of pow3(n) is small (for example,
pow3(16) takes less than 500 nanoseconds), other processes that
run on the computer (even if they take a small amount of time)
may have a relatively big impact on the error of the measurement.

moodle.yorku.ca EECS 1030 10 / 38

moodle.yorku.ca

Errors

Question

Why may the following approach give rise relatively large errors in
the measurement of the execution time?

for n = 0, 1, 2, ...
measure the execution time of pow3(n)

Answer

Because the execution time of pow3(n) is small (for example,
pow3(16) takes less than 500 nanoseconds), other processes that
run on the computer (even if they take a small amount of time)
may have a relatively big impact on the error of the measurement.

moodle.yorku.ca EECS 1030 10 / 38

moodle.yorku.ca

Error

Question

How can we reduce the error?

Answer

Execute pow3 not once but, say, 1,000,000 times.

moodle.yorku.ca EECS 1030 11 / 38

moodle.yorku.ca

Error

Question

How can we reduce the error?

Answer

Execute pow3 not once but, say, 1,000,000 times.

moodle.yorku.ca EECS 1030 11 / 38

moodle.yorku.ca

Confidence

Question

for n = 0, 1, 2, ...
measure the execution time of

for (int i = 0; i < 1000000; i++)
pow3(n)

How can we improve our confidence in the measured execution
time?

Answer

Run the experiment 100 times (compute the average and standard
deviation).

moodle.yorku.ca EECS 1030 12 / 38

moodle.yorku.ca

Confidence

Question

for n = 0, 1, 2, ...
measure the execution time of

for (int i = 0; i < 1000000; i++)
pow3(n)

How can we improve our confidence in the measured execution
time?

Answer

Run the experiment 100 times (compute the average and standard
deviation).

moodle.yorku.ca EECS 1030 12 / 38

moodle.yorku.ca

Experimental set up

When writing and running the code to measure the execution time

ensure that pow3 is executed,

invoke the garbage collector regularly,

run the code in server mode,

use the 64-bit version of the JVM,

ignore the first couple of runs to eliminate the effects of JIT
compilation,

...

The details, although interesting, are outside the scope of this
course.

moodle.yorku.ca EECS 1030 13 / 38

moodle.yorku.ca

Comparison

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0 100 200 300 400

ns

n

Time to compute pow3(n) in nanoseconds

Iteration

Recursion-1

Recursion-2

Recursion-3

moodle.yorku.ca EECS 1030 14 / 38

moodle.yorku.ca

The experimental approach

Advantages

The graph gives us an answer to our question “which
implementation is the most efficient one?”

It is relatively simple.

Disadvantages

It only answers the question for the computer on which the
code is run.

It is time consuming (running the experiment for n = 0, 16,
32, . . . , 336 took more than 24 hours).

moodle.yorku.ca EECS 1030 15 / 38

moodle.yorku.ca

Different computers, different graphs

Research by undergraduate student Trevor Brown and graduate
student Joanna Helga.

moodle.yorku.ca EECS 1030 16 / 38

moodle.yorku.ca

Powers of 3

Alternative

Can we analyze the running time, independent of any computer,
that takes considerably less time?

Answer

Yes.

moodle.yorku.ca EECS 1030 17 / 38

moodle.yorku.ca

Powers of 3

Alternative

Can we analyze the running time, independent of any computer,
that takes considerably less time?

Answer

Yes.

moodle.yorku.ca EECS 1030 17 / 38

moodle.yorku.ca

Running time analysis

Basic idea

Given a value n ≥ 0, estimate the number of elementary
instructions that are executed during the invocation of pow3(n).

Question

What is an elementary instruction?

Answer

Since we estimate, a precise definition of an elementary instruction
is not needed. For example, each bytecode instruction or each
machine instruction can be considered elementary.

moodle.yorku.ca EECS 1030 18 / 38

moodle.yorku.ca

Running time analysis

Basic idea

Given a value n ≥ 0, estimate the number of elementary
instructions that are executed during the invocation of pow3(n).

Question

What is an elementary instruction?

Answer

Since we estimate, a precise definition of an elementary instruction
is not needed. For example, each bytecode instruction or each
machine instruction can be considered elementary.

moodle.yorku.ca EECS 1030 18 / 38

moodle.yorku.ca

Running time analysis

Basic idea

Given a value n ≥ 0, estimate the number of elementary
instructions that are executed during the invocation of pow3(n).

Question

What is an elementary instruction?

Answer

Since we estimate, a precise definition of an elementary instruction
is not needed. For example, each bytecode instruction or each
machine instruction can be considered elementary.

moodle.yorku.ca EECS 1030 18 / 38

moodle.yorku.ca

Estimate

Question

Estimate the number of elementary instructions of the following
code snippet.

int x = 1;

Answer

1 or 2 or even 10 are good estimates.

moodle.yorku.ca EECS 1030 19 / 38

moodle.yorku.ca

Estimate

Question

Estimate the number of elementary instructions of the following
code snippet.

int x = 1;

Answer

1 or 2 or even 10 are good estimates.

moodle.yorku.ca EECS 1030 19 / 38

moodle.yorku.ca

Estimate

Question

Estimate the number of elementary instructions of the following
code snippet.

x = x + 1;

Answer

Something like 3.

moodle.yorku.ca EECS 1030 20 / 38

moodle.yorku.ca

Estimate

Question

Estimate the number of elementary instructions of the following
code snippet.

x = x + 1;

Answer

Something like 3.

moodle.yorku.ca EECS 1030 20 / 38

moodle.yorku.ca

Estimate

Question

Estimate the number of elementary instructions of the following
code snippet.

for (int i = 0; i < n; i++) { }

Answer

Something like 6n + 5, but not 10

moodle.yorku.ca EECS 1030 21 / 38

moodle.yorku.ca

Estimate

Question

Estimate the number of elementary instructions of the following
code snippet.

for (int i = 0; i < n; i++) { }

Answer

Something like 6n + 5, but not 10

moodle.yorku.ca EECS 1030 21 / 38

moodle.yorku.ca

Estimate

Question

Estimate the number of elementary instructions of the following
code snippet.

for (int i = 0; i < n; i++)
{

for (int j = 0; j < n; j++) {}
}

Answer

Something like 6n2 + 11n + 5

moodle.yorku.ca EECS 1030 22 / 38

moodle.yorku.ca

Estimate

Question

Estimate the number of elementary instructions of the following
code snippet.

for (int i = 0; i < n; i++)
{

for (int j = 0; j < n; j++) {}
}

Answer

Something like 6n2 + 11n + 5

moodle.yorku.ca EECS 1030 22 / 38

moodle.yorku.ca

Estimate

Question

Estimate the number of elementary instructionsa of the following
code snippet.

BigInteger power = BigInteger.ONE;
for (int i = 0; i < n; i++)
{

power = power.multiply(THREE);
}

aTo simplify matters a little, we assume that the methods of the
BigInteger class take a constant number of elementary instructions, no
matter how big the numbers are.

moodle.yorku.ca EECS 1030 23 / 38

moodle.yorku.ca

Running time analysis

Strategy

For each line of code, estimate its number of elementary
instructions.

For each line of code, determine how often it is executed.

Determine the total number of elementary instructions.

moodle.yorku.ca EECS 1030 24 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power = BigInteger.ONE;
2. for (int i = 0; i < n; i++)
3. power = power.multiply(THREE);

For each line of code, estimate its number of elementary
instructions.

Answer

line 1: 2 instructions
line 2: 8 instructions
line 3: 4 instructions

moodle.yorku.ca EECS 1030 25 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power = BigInteger.ONE;
2. for (int i = 0; i < n; i++)
3. power = power.multiply(THREE);

For each line of code, estimate its number of elementary
instructions.

Answer

line 1: 2 instructions
line 2: 8 instructions
line 3: 4 instructions

moodle.yorku.ca EECS 1030 25 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power = BigInteger.ONE;
2. for (int i = 0; i < n; i++)
3. power = power.multiply(THREE);

For each line of code, determine how often it is executed.

Answer

line 1: once
line 2: n times
line 3: n times

moodle.yorku.ca EECS 1030 26 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power = BigInteger.ONE;
2. for (int i = 0; i < n; i++)
3. power = power.multiply(THREE);

For each line of code, determine how often it is executed.

Answer

line 1: once
line 2: n times
line 3: n times

moodle.yorku.ca EECS 1030 26 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power = BigInteger.ONE;
2. for (int i = 0; i < n; i++)
3. power = power.multiply(THREE);

Determine the total number of elementary instructions.

Answer

2 + 8n + 4n = 12n + 2

moodle.yorku.ca EECS 1030 27 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power = BigInteger.ONE;
2. for (int i = 0; i < n; i++)
3. power = power.multiply(THREE);

Determine the total number of elementary instructions.

Answer

2 + 8n + 4n = 12n + 2

moodle.yorku.ca EECS 1030 27 / 38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

I : N → N

moodle.yorku.ca EECS 1030 28 / 38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

I : N → N
↑

name of function

moodle.yorku.ca EECS 1030 28 / 38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

I : N → N
↑

domain of function

moodle.yorku.ca EECS 1030 28 / 38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

I : N → N
↑

range of function

moodle.yorku.ca EECS 1030 28 / 38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

I : N → N

I (n) : estimate of the number of elementary instructions executed
in pow3(n)

moodle.yorku.ca EECS 1030 28 / 38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

I : N → N

I (n) = 12n + 2

moodle.yorku.ca EECS 1030 28 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else
5. power = pow3(n - 1).multiply(THREE);

For each line of code, estimate its number of elementary
instructions.

Answer

line 1: 1 instruction
line 2: 3 instructions
line 3: 2 instructions
line 5: R1(n − 1) + 2 instructions

moodle.yorku.ca EECS 1030 29 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else
5. power = pow3(n - 1).multiply(THREE);

For each line of code, estimate its number of elementary
instructions.

Answer

line 1: 1 instruction
line 2: 3 instructions
line 3: 2 instructions
line 5: R1(n − 1) + 2 instructions

moodle.yorku.ca EECS 1030 29 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else
5. power = pow3(n - 1).multiply(THREE);

For each line of code, determine how often it is executed.

Answer

line 1: once
line 2: once
line 3: once or not at all
line 5: once or not at all

moodle.yorku.ca EECS 1030 30 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else
5. power = pow3(n - 1).multiply(THREE);

For each line of code, determine how often it is executed.

Answer

line 1: once
line 2: once
line 3: once or not at all
line 5: once or not at all

moodle.yorku.ca EECS 1030 30 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else
5. power = pow3(n - 1).multiply(THREE);

Determine the total number of elementary instructions.

Answer

R1(0) = 6
R1(n) = R1(n − 1) + 6

The above is known as a recurrence relation.

moodle.yorku.ca EECS 1030 31 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else
5. power = pow3(n - 1).multiply(THREE);

Determine the total number of elementary instructions.

Answer

R1(0) = 6
R1(n) = R1(n − 1) + 6

The above is known as a recurrence relation.

moodle.yorku.ca EECS 1030 31 / 38

moodle.yorku.ca

Solving recurrence relation

Claim

For all n ≥ 0, R1(n) = 6n + 6.

Proof

We prove the claim by induction on n.

Base case: n = 0. By definition, R1(0) = 6. Also,
R1(0) = 6× 0 + 6 = 6.

Inductive case: n > 0. Assume that R1(n− 1) = 6(n− 1) + 6.
(This is the induction hypothesis.) By definition,
R1(n) = R1(n − 1) + 6. By the induction hypothesis,
R1(n) = 6(n − 1) + 6 + 6 = 6n + 6.

moodle.yorku.ca EECS 1030 32 / 38

moodle.yorku.ca

Solving recurrence relation

Claim

For all n ≥ 0, R1(n) = 6n + 6.

Proof

We prove the claim by induction on n.

Base case: n = 0. By definition, R1(0) = 6. Also,
R1(0) = 6× 0 + 6 = 6.

Inductive case: n > 0. Assume that R1(n− 1) = 6(n− 1) + 6.
(This is the induction hypothesis.) By definition,
R1(n) = R1(n − 1) + 6. By the induction hypothesis,
R1(n) = 6(n − 1) + 6 + 6 = 6n + 6.

moodle.yorku.ca EECS 1030 32 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. power = pow3(n / 2).multiply(pow3(n / 2));

For each line of code, estimate its number of elementary instructions.

Answer

line 1: 1 instruction
line 2: 3 instructions
line 3: 2 instructions
line 4: 5 instructions
line 5: R2(n − 1) + 2 instructions
line 7: 2R2(n/2) + 2 instructions

moodle.yorku.ca EECS 1030 33 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. power = pow3(n / 2).multiply(pow3(n / 2));

For each line of code, estimate its number of elementary instructions.

Answer

line 1: 1 instruction
line 2: 3 instructions
line 3: 2 instructions
line 4: 5 instructions
line 5: R2(n − 1) + 2 instructions
line 7: 2R2(n/2) + 2 instructions

moodle.yorku.ca EECS 1030 33 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. power = pow3(n / 2).multiply(pow3(n / 2));

For each line of code, determine how often it is executed.

Answer

line 1: once
line 2: once
line 3: once or not at all
line 4: once or not at all
line 5: once or not at all

line 7: once or not at all

moodle.yorku.ca EECS 1030 34 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. power = pow3(n / 2).multiply(pow3(n / 2));

For each line of code, determine how often it is executed.

Answer

line 1: once
line 2: once
line 3: once or not at all
line 4: once or not at all
line 5: once or not at all

line 7: once or not at all

moodle.yorku.ca EECS 1030 34 / 38

moodle.yorku.ca

Powers of 3

Recurrence relation

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. power = pow3(n / 2).multiply(pow3(n / 2));

Determine the recurrence relation.

Answer

R2(0) = 6

R2(n) =

{
R2(n − 1) + 11 if n is odd
2R2(n/2) + 11 if n is even

moodle.yorku.ca EECS 1030 35 / 38

moodle.yorku.ca

Powers of 3

Recurrence relation

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. power = pow3(n / 2).multiply(pow3(n / 2));

Determine the recurrence relation.

Answer

R2(0) = 6

R2(n) =

{
R2(n − 1) + 11 if n is odd
2R2(n/2) + 11 if n is even

moodle.yorku.ca EECS 1030 35 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. BigInteger temp = power(n / 2);
8. power = temp.multiply(temp);

For each line of code, estimate its number of elementary instructions.

Answer

line 1: 1 instruction line 5: R3(n − 1) + 2 instructions
line 2: 3 instructions line 7: R3(n/2) + 4 instructions
line 3: 2 instructions line 8: 4 instructions
line 4: 5 instructions

moodle.yorku.ca EECS 1030 36 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. BigInteger temp = power(n / 2);
8. power = temp.multiply(temp);

For each line of code, estimate its number of elementary instructions.

Answer

line 1: 1 instruction line 5: R3(n − 1) + 2 instructions
line 2: 3 instructions line 7: R3(n/2) + 4 instructions
line 3: 2 instructions line 8: 4 instructions
line 4: 5 instructions

moodle.yorku.ca EECS 1030 36 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. BigInteger temp = power(n / 2);
8. power = temp.multiply(temp);

For each line of code, determine how often it is executed.

Answer

line 1: once line 5: once or not at all
line 2: once line 7: once or not at all
line 3: once or not at all line 8: once or not at all
line 4: once or not at all

moodle.yorku.ca EECS 1030 37 / 38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. BigInteger temp = power(n / 2);
8. power = temp.multiply(temp);

For each line of code, determine how often it is executed.

Answer

line 1: once line 5: once or not at all
line 2: once line 7: once or not at all
line 3: once or not at all line 8: once or not at all
line 4: once or not at all

moodle.yorku.ca EECS 1030 37 / 38

moodle.yorku.ca

Recurrence relation

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. BigInteger temp = power(n / 2);
8. power = temp.multiply(temp);

Determine the total number of elementary instructions.

Answer

R3(0) = 6

R3(n) =

{
R2(n − 1) + 11 if n is odd
R2(n/2) + 11 if n is even

moodle.yorku.ca EECS 1030 38 / 38

moodle.yorku.ca

Recurrence relation

Question

1. BigInteger power;
2. if (n == 0)
3. power = BigInteger.ONE;
4. else if (n % 2 == 1)
5. power = pow3(n - 1).multiply(THREE);
6. else
7. BigInteger temp = power(n / 2);
8. power = temp.multiply(temp);

Determine the total number of elementary instructions.

Answer

R3(0) = 6

R3(n) =

{
R2(n − 1) + 11 if n is odd
R2(n/2) + 11 if n is even

moodle.yorku.ca EECS 1030 38 / 38

moodle.yorku.ca

