The fourth test will be 75 minutes, will consist of two parts and
will take place this week.

The programming part will be about Chapter 2-6, excluding
Section 2.6, 4.5, and 6.8.8. You will be asked to implement one
class. We will already provide you with a skeleton which includes
the javadoc. This part will be worth 70% of the marks. If your
code does not compile, you get a 50% penalty (that is, your score
for the programming part will be divided by 2 if your code does not
compile).

The "written” part will be about Chapter 2-6, excluding Section
2.6, 4.5, and 6.8.8. This part will consist of three questions (two
multiple choice/short answer questions and one longer answer
question). This part will be worth the remaining 30% of the marks.

During the test, you will have access to the textbook. You may
bring a blank piece of paper to the test.

moodle.yorku.ca EECS 1030 1/38

moodle.yorku.ca

Chapter 7: Recursion

EECS 1030

moodle.yorku.ca

moodle.yorku.ca EECS 1030 2/38

moodle.yorku.ca
moodle.yorku.ca

/*x
* Returns 3 raised to the given power.
*
* @param n a number.
* @pre. n >= 0
*/
public static BigInteger pow3(int n)

moodle.yorku.ca EECS 1030 3/38

moodle.yorku.ca

Biglnteger

Why is the return type of pow3 the class BigInteger? \

moodle.yorku.ca EECS 1030 4/38

moodle.yorku.ca

Biglnteger

Why is the return type of pow3 the class BigInteger? \

3Integer .MAX_VALUE

Because
long.

cannot be represented by int or

moodle.yorku.ca EECS 1030 4/38

moodle.yorku.ca

Powers of 3: Iteration

BigInteger power = Biglnteger.ONE;
for (int 1 = 0; i < n; i++)
{

power = power.multiply(THREE) ;

moodle.yorku.ca EECS 1030 5/38

moodle.yorku.ca

Powers of 3: Recursion — version 1

BigInteger power;
if (n == 0)
{

power = Biglnteger.ONE;
b

else

{

power = pow3(n - 1).multiply(THREE);

moodle.yorku.ca EECS 1030 6/38

moodle.yorku.ca

Powers of 3: Recursion — version 2

BigInteger power;
if (n == 0)
{
power = BigInteger.ONE;
b
else if (n % 2 == 1)
{

power = pow3(n - 1).multiply(THREE);
}

else

{

power = pow3(n / 2).multiply(pow3(n / 2));

moodle.yorku.ca EECS 1030 7/38

moodle.yorku.ca

Powers of 3: Recursion — version 3

BigInteger power;

if (n == 0)
{
power = BigInteger.ONE;
}
else if (n % 2 == 1)
{
power = pow3(n - 1).multiply(THREE);
}
else
{
BigInteger temp = power(n / 2);
power = temp.multiply(temp);
}

moodle.yorku.ca EECS 1030 8/38

moodle.yorku.ca

Efficiency

How do we determine which implementation is the most efficient
one?

moodle.yorku.ca EECS 1030 9/38

moodle.yorku.ca

Efficiency

How do we determine which implementation is the most efficient
one?

Run the implementations and measure their execution times. \

moodle.yorku.ca EECS 1030 9/38

moodle.yorku.ca

Errors

Why may the following approach give rise relatively large errors in
the measurement of the execution time?

forn =0, 1, 2,
measure the execution time of pow3(n)

moodle.yorku.ca EECS 1030 10/38

moodle.yorku.ca

Errors

Question

Why may the following approach give rise relatively large errors in
the measurement of the execution time?

forn =0, 1, 2,
measure the execution time of pow3(n)

Answer

| A

Because the execution time of pow3(n) is small (for example,
pow3(16) takes less than 500 nanoseconds), other processes that
run on the computer (even if they take a small amount of time)
may have a relatively big impact on the error of the measurement.

v

moodle.yorku.ca EECS 1030 10/38

moodle.yorku.ca

Error

How can we reduce the error?

moodle.yorku.ca EECS 1030 11/38

moodle.yorku.ca

Error

How can we reduce the error? \
Execute pow3 not once but, say, 1,000,000 times. \

moodle.yorku.ca EECS 1030 11/38

moodle.yorku.ca

Confidence

for n =0, 1, 2,
measure the execution time of
for (int 1 = 0; i < 1000000; i++)
pow3(n)

How can we improve our confidence in the measured execution
time?

moodle.yorku.ca EECS 1030 12/38

moodle.yorku.ca

Confidence

for n =0, 1, 2,
measure the execution time of
for (int 1 = 0; i < 1000000; i++)
pow3(n)

How can we improve our confidence in the measured execution
time?

Run the experiment 100 times (compute the average and standard
deviation).

moodle.yorku.ca EECS 1030 12/38

moodle.yorku.ca

Experimental set up

When writing and running the code to measure the execution time
@ ensure that pow3 is executed,
@ invoke the garbage collector regularly,
@ run the code in server mode,
@ use the 64-bit version of the JVM,

@ ignore the first couple of runs to eliminate the effects of JIT
compilation,
o ...

The details, although interesting, are outside the scope of this
course.

moodle.yorku.ca EECS 1030 13/38

moodle.yorku.ca

Comparison

Time to compute pow3(n) in nanoseconds

18000
16000
14000
12000
10000
8000
6000
4000
2000

= |teration

ns .
e Recursion-1

Recursion-2

Recursion-3

moodle.yorku.ca EECS 1030 14 /38

moodle.yorku.ca

The experimental approach

@ The graph gives us an answer to our question “which
implementation is the most efficient one?”

o It is relatively simple.

Disadvantages

@ It only answers the question for the computer on which the
code is run.

@ It is time consuming (running the experiment for n = 0, 16,
32, ..., 336 took more than 24 hours).

moodle.yorku.ca EECS 1030 15/38

moodle.yorku.ca

Different computers,

different graphs

WMillions

throughput (milllons of ops/s)

a4 = o
[

=
8

e N a2 a o

50% inserts, 40% deletes, key range 2000000

/
e
/,‘///-/
i
/.’/v—'

——AVL
-m-BST
—&—4ST
-&-SL

Research by undergraduate student Trevor Brown and graduate

student Joanna Helga.

moodle.yorku.ca EECS 1030

16/38

moodle.yorku.ca

Alternative

Can we analyze the running time, independent of any computer,
that takes considerably less time?

moodle.yorku.ca EECS 1030 17 /38

moodle.yorku.ca

Alternative

Can we analyze the running time, independent of any computer,
that takes considerably less time?

moodle.yorku.ca EECS 1030 17 /38

moodle.yorku.ca

Running time analysis

Basic idea

Given a value n > 0, estimate the number of elementary
instructions that are executed during the invocation of pow3(n).

moodle.yorku.ca EECS 1030 18 /38

moodle.yorku.ca

Running time analysis

Basic idea

Given a value n > 0, estimate the number of elementary
instructions that are executed during the invocation of pow3(n).

What is an elementary instruction? \

moodle.yorku.ca EECS 1030 18 /38

moodle.yorku.ca

Running time analysis

Basic idea

Given a value n > 0, estimate the number of elementary
instructions that are executed during the invocation of pow3(n).

What is an elementary instruction?

Since we estimate, a precise definition of an elementary instruction
is not needed. For example, each bytecode instruction or each
machine instruction can be considered elementary.

moodle.yorku.ca EECS 1030 18 /38

moodle.yorku.ca

Estimate the number of elementary instructions of the following
code snippet.

int x = 1;

moodle.yorku.ca EECS 1030 19/38

moodle.yorku.ca

Estimate the number of elementary instructions of the following
code snippet.

int x = 1;

1 or 2 or even 10 are good estimates.

moodle.yorku.ca EECS 1030 19/38

moodle.yorku.ca

Estimate the number of elementary instructions of the following
code snippet.

moodle.yorku.ca EECS 1030 20/38

moodle.yorku.ca

Estimate the number of elementary instructions of the following
code snippet.

Something like 3.

moodle.yorku.ca EECS 1030 20/38

moodle.yorku.ca

Estimate the number of elementary instructions of the following
code snippet.

for (int i = 0; i < n; i++) { }

moodle.yorku.ca EECS 1030 21/38

moodle.yorku.ca

Estimate the number of elementary instructions of the following
code snippet.

for (int i = 0; i < n; i++) { }

Something like 6n + 5, but not 10

moodle.yorku.ca EECS 1030 21/38

moodle.yorku.ca

Estimate

Question
Estimate the number of elementary instructions of the following
code snippet.

for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++) {3

moodle.yorku.ca EECS 1030 22/38

moodle.yorku.ca

Estimate

Question

Estimate the number of elementary instructions of the following
code snippet.

for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++) {3

Something like 6n%> + 11n + 5

moodle.yorku.ca EECS 1030 22/38

moodle.yorku.ca

Estimate

Question

Estimate the number of elementary instructions? of the following
code snippet.

BigInteger power = BigInteger.ONE;
for (dnt i = 0; i < n; i++)
{

power = power.multiply(THREE) ;

“To simplify matters a little, we assume that the methods of the
BigInteger class take a constant number of elementary instructions, no
matter how big the numbers are.

moodle.yorku.ca EECS 1030

23/38

moodle.yorku.ca

Running time analysis

Strategy

@ For each line of code, estimate its number of elementary
instructions.

@ For each line of code, determine how often it is executed.

@ Determine the total number of elementary instructions.

moodle.yorku.ca EECS 1030 24 /38

moodle.yorku.ca

Estimate

Question

1. Biglnteger power = Biglnteger.ONE;
2. for (int i = 0; i < n; i++)
3. power = power.multiply(THREE);

For each line of code, estimate its number of elementary
instructions.

moodle.yorku.ca EECS 1030 25/38

moodle.yorku.ca

Estimate

Question

1. Biglnteger power = Biglnteger.ONE;
2. for (int i = 0; i < n; i++)

3. power = power.multiply(THREE);

For each line of code, estimate its number of elementary
instructions.

Answer

| A

line 1: 2 instructions
line 2: 8 instructions
line 3: 4 instructions

moodle.yorku.ca EECS 1030

25/38

moodle.yorku.ca

1. BigInteger power = Biglnteger.ONE;
2. for (int i = 0; i < n; i++)
8. power = power.multiply(THREE) ;

For each line of code, determine how often it is executed.

moodle.yorku.ca EECS 1030 26/38

moodle.yorku.ca

1. BigInteger power = Biglnteger.ONE;
2. for (int i = 0; i < n; i++)
8. power = power.multiply(THREE) ;

For each line of code, determine how often it is executed.

line 1: once

line 2: n times
line 3: n times

moodle.yorku.ca EECS 1030 26/38

moodle.yorku.ca

1. BigInteger power = Biglnteger.ONE;
2. for (int i = 0; i < n; i++)
8. power = power.multiply(THREE) ;

Determine the total number of elementary instructions.

moodle.yorku.ca EECS 1030 27/38

moodle.yorku.ca

1. BigInteger power = Biglnteger.ONE;
2. for (int i = 0; i < n; i++)
8. power = power.multiply(THREE) ;

Determine the total number of elementary instructions.

2+ 8n+4n =12n + 2

moodle.yorku.ca EECS 1030 27/38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

/| - N — N

moodle.yorku.ca EECS 1030 28/38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

/] : N — N
T

name of function

moodle.yorku.ca EECS 1030 28/38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

/| : N — N
T

domain of function

moodle.yorku.ca EECS 1030 28/38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

/I @ N —- N
1

range of function

moodle.yorku.ca EECS 1030 28/38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

/I : N — N

I(n) : estimate of the number of elementary instructions executed
in pow3(n)

moodle.yorku.ca EECS 1030 28/38

moodle.yorku.ca

Functions

Each estimate can be viewed as a function from natural numbers
(nonnegative integers) to natural numbers.

/I @ N —- N

I(n)=12n+2

moodle.yorku.ca EECS 1030 28/38

moodle.yorku.ca

Estimate

1. BigInteger power;

2. if (n == 0)

3. power = Biglnteger.ONE;

4. else

B power = pow3(n - 1).multiply(THREE) ;

For each line of code, estimate its number of elementary
instructions.

moodle.yorku.ca EECS 1030 29/38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;

2. if (n == 0)

3. power = Biglnteger.ONE;

4. else

B power = pow3(n - 1).multiply(THREE) ;

For each line of code, estimate its number of elementary
instructions.

Answer

| \

line 1: 1 instruction
line 2: 3 instructions
line 3: 2 instructions
line 5: Ri(n— 1) + 2 instructions

moodle.yorku.ca EECS 1030 29/38

moodle.yorku.ca

Estimate

1. BigInteger power;

2. if (n == 0)

3. power = Biglnteger.ONE;

4. else

5 power = pow3(n - 1).multiply(THREE);

For each line of code, determine how often it is executed.

moodle.yorku.ca EECS 1030 30/38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;

2. if (n == 0)

3. power = Biglnteger.ONE;

4. else

B power = pow3(n - 1).multiply(THREE);

For each line of code, determine how often it is executed.

Answer

| A

line 1: once
line 2: once
line 3: once or not at all
line 5: once or not at all

moodle.yorku.ca EECS 1030 30/38

moodle.yorku.ca

Estimate

1. Biglnteger power;

2. if (n == 0)

3 power = Biglnteger.ONE;

4. else

5 power = pow3(n - 1).multiply(THREE);
Determine the total number of elementary instructions.

moodle.yorku.ca EECS 1030 31/38

moodle.yorku.ca

Estimate

Question

1. Biglnteger power;

2. if (n == 0)

3 power = Biglnteger.ONE;

4. else

5 power = pow3(n - 1).multiply(THREE);

Determine the total number of elementary instructions.

Answer
R:1(0) =6
Ri(n) = Ri(n—1)+6

| A

The above is known as a recurrence relation.

moodle.yorku.ca EECS 1030 31/38

moodle.yorku.ca

Solving recurrence relation

For all n >0, Ry(n) = 6n+ 6.

moodle.yorku.ca EECS 1030 32/38

moodle.yorku.ca

Solving recurrence relation

For all n >0, Ri(n) = 6n+6.

We prove the claim by induction on n.
@ Base case: n = 0. By definition, R;1(0) = 6. Also,
Ri(0) =6 x0+6 =6.
@ Inductive case: n > 0. Assume that Ry(n—1) =6(n—1) +6.
(This is the induction hypothesis.) By definition,
Ri(n) = Ri(n—1) 4+ 6. By the induction hypothesis,
Ri(n) =6(n—1)+6+6 =6n+6.

moodle.yorku.ca EECS 1030 32/38

moodle.yorku.ca

Estimate

Question

BigInteger power;
if (n == 0)
power = Biglnteger.ONE;
. else if (n % 2 == 1)
power = pow3(n - 1).multiply(THREE);
else
power = pow3(n / 2).multiply(pow3(n / 2));

~N O O WN e

For each line of code, estimate its number of elementary instructions.

moodle.yorku.ca EECS 1030 33/38

moodle.yorku.ca

BigInteger power;
if (n == 0)
power = Biglnteger.ONE;
. else if (n % 2 == 1)
power = pow3(n - 1).multiply(THREE);
else
power = pow3(n / 2).multiply(pow3(n / 2));

~N O O WN e

For each line of code, estimate its number of elementary instructions.

’

Answer

line 1: 1 instruction
line 2: 3 instructions
line 3: 2 instructions
line 4: 5 instructions
line 5: Ry(n — 1) + 2 instructions
line 7: 2R>(n/2) + 2 instructions

moodle.yorku.ca EECS 1030 33/38

moodle.yorku.ca

Estimate

Question

BigInteger power;
if (n == 0)
power = Biglnteger.ONE;
. else if (n % 2 == 1)
power = pow3(n - 1).multiply(THREE);
else
power = pow3(n / 2).multiply(pow3(n / 2));

~N O O WN -

For each line of code, determine how often it is executed.

moodle.yorku.ca EECS 1030 34/38

moodle.yorku.ca

1. BigInteger power;

2. if (n == 0)

3. power = Biglnteger.ONE;

4. else if (n % 2 == 1)

Be power = pow3(n - 1).multiply(THREE);

6. else

7. power = pow3(n / 2).multiply(pow3(n / 2));

For each line of code, determine how often it is executed.

Answer

line 1: once
line 2: once
line 3: once or not at all
line 4: once or not at all
line 5: once or not at all

line 7: once or not at all

v

moodle.yorku.ca EECS 1030 34/38

moodle.yorku.ca

Powers of 3

Recurrence relation

1. Biglnteger power;

2. if (n == 0)

3 power = BigInteger.ONE;

4. else if (n % 2 == 1)

5 power = pow3(n - 1) .multiply(THREE);

6. else

7 power = pow3(n / 2) .multiply(pow3(n / 2));
Determine the recurrence relation.

moodle.yorku.ca EECS 1030 35/38

moodle.yorku.ca

Powers of 3

1. Biglnteger power;

2. if (n == 0)

3 power = BigInteger.ONE;

4. else if (n % 2 == 1)

5 power = pow3(n - 1) .multiply(THREE);

6. else

7 power = pow3(n / 2) .multiply(pow3(n / 2));

Determine the recurrence relation.

v

Answer

R>(0)
Rz(n)

6
Ro(n—1)+ 11 if nis odd
R2(n/2) +11 if nis even

moodle.yorku.ca EECS 1030 35/38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;

2. if (n == 0)

3. power = Biglnteger.ONE;
4. else if (n % 2 == 1)

5 power = pow3(n - 1).multiply(THREE) ;
6. else

7. BigInteger temp = power(n / 2);

8 power = temp.multiply(temp) ;

For each line of code, estimate its number of elementary instructions.

moodle.yorku.ca EECS 1030 36/38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;

2. if (n == 0)

3. power = Biglnteger.ONE;
4. else if (n % 2 == 1)

5 power = pow3(n - 1).multiply(THREE) ;
6. else

7. BigInteger temp = power(n / 2);

8 power = temp.multiply(temp) ;

For each line of code, estimate its number of elementary instructions.

Answer

line 1: 1 instruction line 5: R3(n — 1) + 2 instructions
line 2: 3 instructions line 7: R3(n/2) + 4 instructions
line 3: 2 instructions line 8: 4 instructions

line 4: 5 instructions

moodle.yorku.ca EECS 1030 36/38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;

2. if (n == 0)

3. power = Biglnteger.ONE;
4. else if (n % 2 == 1)

5 power = pow3(n - 1).multiply(THREE) ;
6. else

7. BigInteger temp = power(n / 2);

8 power = temp.multiply(temp) ;

For each line of code, determine how often it is executed.

moodle.yorku.ca EECS 1030 37/38

moodle.yorku.ca

Estimate

Question

1. BigInteger power;

2. if (n == 0)

3. power = Biglnteger.ONE;
4. else if (n % 2 == 1)

5 power = pow3(n - 1).multiply(THREE) ;
6. else

7. BigInteger temp = power(n / 2);

8 power = temp.multiply(temp) ;

For each line of code, determine how often it is executed.

Answer
line 1: once line 5: once or not at all
line 2: once line 7: once or not at all
line 3: once or not at all line 8: once or not at all

line 4: once or not at all

moodle.yorku.ca EECS 1030 37/38

moodle.yorku.ca

Recurrence relation

Question
1. BigInteger power;
2. if (n == 0)
3. power = Biglnteger.ONE;
4. else if (n % 2 == 1)
power = pow3(n - 1).multiply(THREE) ;
else
BigInteger temp = power(n / 2);

5
6.
7.
8 power = temp.multiply(temp);

Determine the total number of elementary instructions.

moodle.yorku.ca EECS 1030 38/38

moodle.yorku.ca

Recurrence relation

1. BigInteger power;

2. if (n == 0)

3 power = Biglnteger.ONE;

4. else if (n % 2 == 1)

5. power = pow3(n - 1).multiply(THREE) ;
6. else

7 BigInteger temp = power(n / 2);

8 power = temp.multiply(temp);

Determine the total number of elementary instructions.

R3(0) = 6
[Ri(n—1)+11 if nis odd
Ra(n) = { Rx(n/2) +11 if nis even

moodle.yorku.ca EECS 1030 38/38

moodle.yorku.ca

