
Test 3

The second test will be 75 minutes and will consist of two parts.

The programming part will be about Chapter 2-5, excluding
Section 2.6, 4.5, 5.2 and 5.3. You will be asked to implement one
class. We will already provide you with a skeleton which includes
the javadoc. This part will be worth 50% of the marks. If your
code does not compile, you get a 50% penalty (that is, your score
for the programming part will be divided by 2 if your code does not
compile).

The ”written” part will also be about Chapter 2-5, excluding
Section 2.6, 4.5, 5.2 and 5.3. This part will consist of six questions
(two multiple choice, two short answer questions and two longer
answer questions). This part will be worth the remaining 50% of
the marks.

During the test, you will have access to the textbook. You may
bring a blank piece of paper to the test.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Chapter 6: Inheritance
EECS 1030

moodle.yorku.ca

moodle.yorku.ca EECS 1030

moodle.yorku.ca
moodle.yorku.ca

The extends keyword

To specify that the GoldenRectangle class is a subclass of the
Rectangle class, we use the following class header:

public class GoldenRectangle extends Rectangle

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Attributes

The private attributes width and height of the Rectangle class
are part of the state of a GoldenRectangle object, but are not
inherited.

As a result, the private attributes width and height of the
Rectangle class cannot be accessed by their name in the
GoldenRectangle class.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Constructors

Delegate to a constructor of the Rectangle class to initializes the
attributes width and height.

Although it may not be the most intuitive syntax, we use

super(width, height);

super has an implicit parameter, namely this.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Overridden methods

Delegate to the corresponding method in the super class.

Although it may not be the most intuitive syntax, we use, for
example,

super.equals(object)

super has an implicit parameter, namely this.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

toString method

boolean equal;
if (object != null && this.getClass() == object.getClass())
{

GoldenRectangle other = (GoldenRectangle) object;
equal = super.equals(other) &&

this.getWeight() == other.getWeight();
}
else
{

equal = false;
}
return equal;

moodle.yorku.ca EECS 1030

moodle.yorku.ca

toString method

Question

Can we simply use

return super.equals(object) &&
this.getWeight() == ((GoldenRectangle) object).getWeight();

Answer

Yes.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

toString method

Question

Can we simply use

return super.equals(object) &&
this.getWeight() == ((GoldenRectangle) object).getWeight();

Answer

Yes.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

final int WIDTH = 3;
final int HEIGHT = 6;
final int WEIGHT = 80;

GoldenRectangle first =
new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

GoldenRectangle second =
new GoldenRectangle(WIDTH, HEIGHT, 2 ∗ WEIGHT);

output. println (first . equals(second));

100 main invocation
WIDTH
HEIGHT
WEIGHT
first
second

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

final int WIDTH = 3;
final int HEIGHT = 6;
final int WEIGHT = 80;

GoldenRectangle first =
new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

GoldenRectangle second =
new GoldenRectangle(WIDTH, HEIGHT, 2 ∗ WEIGHT);

output. println (first . equals(second));

100 main invocation
3 WIDTH

HEIGHT
WEIGHT
first
second

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

final int WIDTH = 3;
final int HEIGHT = 6;
final int WEIGHT = 80;

GoldenRectangle first =
new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

GoldenRectangle second =
new GoldenRectangle(WIDTH, HEIGHT, 2 ∗ WEIGHT);

output. println (first . equals(second));

100 main invocation
3 WIDTH
6 HEIGHT

WEIGHT
first
second

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

final int WIDTH = 3;
final int HEIGHT = 6;

final int WEIGHT = 80;
GoldenRectangle first =

new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);
GoldenRectangle second =

new GoldenRectangle(WIDTH, HEIGHT, 2 ∗ WEIGHT);
output. println (first . equals(second));

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT

first
second

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

final int WIDTH = 3;
final int HEIGHT = 6;
final int WEIGHT = 80;

GoldenRectangle first =
new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

GoldenRectangle second =
new GoldenRectangle(WIDTH, HEIGHT, 2 ∗ WEIGHT);

output. println (first . equals(second));

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first

second

200 GoldenRectangle object
3 width
6 height
80 weight

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

final int WIDTH = 3;
final int HEIGHT = 6;
final int WEIGHT = 80;

GoldenRectangle first =
new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

GoldenRectangle second =
new GoldenRectangle(WIDTH, HEIGHT, 2 * WEIGHT);

output. println (first . equals(second));

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

final int WIDTH = 3;
final int HEIGHT = 6;
final int WEIGHT = 80;

GoldenRectangle first =
new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

GoldenRectangle second =
new GoldenRectangle(WIDTH, HEIGHT, 2 ∗ WEIGHT);

output. println (first.equals(second));

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

return super. equals(object) &&
this .getWeight() == ((GoldenRectangle) object).getWeight();

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

return super.equals(object) &&
this .getWeight() == ((GoldenRectangle) object).getWeight();

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

500 toString invocation
200 this
300 object

equal
other

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

boolean equal ;
if (object != null && this.getClass () == object.getClass())
{

Rectangle other = (Rectangle) object ;
equal = this .getWidth() == other.getWidth &&

this .getHeight() == other.getHeight();
}
else
{

equal = false ;
}
return equal ;

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

500 toString invocation
200 this
300 object

other
equal

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

boolean equal;
if (object != null && this.getClass () == object.getClass())
{

Rectangle other = (Rectangle) object ;
equal = this .getWidth() == other.getWidth &&

this .getHeight() == other.getHeight();
}
else
{

equal = false ;
}
return equal ;

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

500 toString invocation
200 this
300 object

other
equal

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

boolean equal ;
if (object != null && this.getClass() == object.getClass())
{

Rectangle other = (Rectangle) object ;
equal = this .getWidth() == other.getWidth &&

this .getHeight() == other.getHeight();
}
else
{

equal = false ;
}
return equal ;

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

500 toString invocation
200 this
300 object

other
equal

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

boolean equal ;
if (object != null && this.getClass() == object.getClass())
{

Rectangle other = (Rectangle) object ;
equal = this .getWidth() == other.getWidth &&

this .getHeight() == other.getHeight();
}
else
{

equal = false ;
}
return equal ;

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

500 toString invocation
200 this
300 object

other
equal

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

boolean equal ;
if (object != null && this.getClass () == object.getClass())
{

Rectangle other = (Rectangle) object;
equal = this .getWidth() == other.getWidth &&

this .getHeight() == other.getHeight();
}
else
{

equal = false ;
}
return equal ;

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

500 toString invocation
200 this
300 object
300 other

equal

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

boolean equal ;
if (object != null && this.getClass () == object.getClass())
{

Rectangle other = (Rectangle) object ;
equal = this.getWidth() == other.getWidth() &&

this .getHeight() == other.getHeight();
}
else
{

equal = false ;
}
return equal ;

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

500 toString invocation
200 this
300 object
300 other

equal

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

boolean equal ;
if (object != null && this.getClass () == object.getClass())
{

Rectangle other = (Rectangle) object ;
equal = this .getWidth() == other.getWidth() &&

this.getHeight() == other.getHeight();
}
else
{

equal = false ;
}
return equal ;

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

500 toString invocation
200 this
300 object
300 other

equal

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

boolean equal ;
if (object != null && this.getClass () == object.getClass())
{

Rectangle other = (Rectangle) object ;
equal = this.getWidth() == other.getWidth() &&

this .getHeight() == other.getHeight();
}
else
{

equal = false ;
}
return equal ;

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

500 toString invocation
200 this
300 object
300 other
true equal

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

boolean equal ;
if (object != null && this.getClass () == object.getClass())
{

Rectangle other = (Rectangle) object ;
equal = this .getWidth() == other.getWidth() &&

this .getHeight() == other.getHeight();
}
else
{

equal = false ;
}
return equal;

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

500 toString invocation
200 this
300 object
300 other
true equal

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Memory diagram

return super. equals(object) &&
this.getWeight() == ((GoldenRectangle) object).getWeight();

100 main invocation
3 WIDTH
6 HEIGHT
80 WEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

400 toString invocation
200 this
300 object

moodle.yorku.ca EECS 1030

moodle.yorku.ca

toString method

return super.equals(object) &&
this.getWeight() == ((GoldenRectangle) object).getWeight();

Question

What happens when object is null?

Answer

super.equals(object) returns false and therefore
this.getWeight() == ((GoldenRectangle)
object).getWeight() is not executed (so no
NullPointerException).

moodle.yorku.ca EECS 1030

moodle.yorku.ca

toString method

return super.equals(object) &&
this.getWeight() == ((GoldenRectangle) object).getWeight();

Question

What happens when object is null?

Answer

super.equals(object) returns false and therefore
this.getWeight() == ((GoldenRectangle)
object).getWeight() is not executed (so no
NullPointerException).

moodle.yorku.ca EECS 1030

moodle.yorku.ca

toString method

return super.equals(object) &&
this.getWeight() == ((GoldenRectangle) object).getWeight();

Question

What happens when object is not a GoldenRectangle?

Answer

super.equals(object) returns false and therefore
this.getWeight() == ((GoldenRectangle)
object).getWeight() is not executed (so no
ClassCastException).

moodle.yorku.ca EECS 1030

moodle.yorku.ca

toString method

return super.equals(object) &&
this.getWeight() == ((GoldenRectangle) object).getWeight();

Question

What happens when object is not a GoldenRectangle?

Answer

super.equals(object) returns false and therefore
this.getWeight() == ((GoldenRectangle)
object).getWeight() is not executed (so no
ClassCastException).

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Implement your own Exception class

Problem

Implement the PricingException class, the API of which can be
found here.

moodle.yorku.ca EECS 1030

http://www.cse.yorku.ca/~buildIt/api//5/PricingException.api/
moodle.yorku.ca

Implement your own Exception class

Question

What is the class header?

Answer

public class PricingException extends Exception

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Implement your own Exception class

Question

What is the class header?

Answer

public class PricingException extends Exception

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Implement your own Exception class

Question

Which attributes are part of the state of a PricingException
object?

Answer

An attribute named message of type String.

Question

Do we have to declare this attribute in the PricingException
class?

Answer

No, because it is already present in the super class Throwable.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Implement your own Exception class

Question

Which attributes are part of the state of a PricingException
object?

Answer

An attribute named message of type String.

Question

Do we have to declare this attribute in the PricingException
class?

Answer

No, because it is already present in the super class Throwable.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Implement your own Exception class

Question

Which attributes are part of the state of a PricingException
object?

Answer

An attribute named message of type String.

Question

Do we have to declare this attribute in the PricingException
class?

Answer

No, because it is already present in the super class Throwable.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Implement your own Exception class

Question

Which attributes are part of the state of a PricingException
object?

Answer

An attribute named message of type String.

Question

Do we have to declare this attribute in the PricingException
class?

Answer

No, because it is already present in the super class Throwable.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Implement your own Exception class

Problem

Implement the constructors.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Combining inheritance and aggregation

Problem

Implement the ColouredRectangle class, the API of which can
be found here.

moodle.yorku.ca EECS 1030

http://www.cse.yorku.ca/~buildIt/api//5/ColouredRectangle.api/
moodle.yorku.ca

Combining inheritance and aggregation

Question

What is the class header?

Answer

public class ColouredRectangle extends Rectangle

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Combining inheritance and aggregation

Question

What is the class header?

Answer

public class ColouredRectangle extends Rectangle

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Combining inheritance and aggregation

Question

Which attributes are part of the state of a ColouredRectangle
object?

Answer

The attributes width and height of type int and the attribute
colour of type Color.

Question

Which do we have to declare in the ColouredRectangle class?

Answer

Only the attribute colour of type Color.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Combining inheritance and aggregation

Question

Which attributes are part of the state of a ColouredRectangle
object?

Answer

The attributes width and height of type int and the attribute
colour of type Color.

Question

Which do we have to declare in the ColouredRectangle class?

Answer

Only the attribute colour of type Color.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Combining inheritance and aggregation

Question

Which attributes are part of the state of a ColouredRectangle
object?

Answer

The attributes width and height of type int and the attribute
colour of type Color.

Question

Which do we have to declare in the ColouredRectangle class?

Answer

Only the attribute colour of type Color.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Combining inheritance and aggregation

Question

Which attributes are part of the state of a ColouredRectangle
object?

Answer

The attributes width and height of type int and the attribute
colour of type Color.

Question

Which do we have to declare in the ColouredRectangle class?

Answer

Only the attribute colour of type Color.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Combining inheritance and aggregation

Rectangle

ColorColouredRectangle
1

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Combining inheritance and aggregation

Question

When implementing the constructors, how do we delegate?

Answer

This can be done in different ways. For example, the copy
constructor delegates to the three-parameter constructor, and the
three-parameter constructor delegates to a constructor of the super
class.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

Combining inheritance and aggregation

Question

When implementing the constructors, how do we delegate?

Answer

This can be done in different ways. For example, the copy
constructor delegates to the three-parameter constructor, and the
three-parameter constructor delegates to a constructor of the super
class.

moodle.yorku.ca EECS 1030

moodle.yorku.ca

