
Introduction to Computer Science II
The Implementer’s View

Franck van Breugel and Hamzeh Roumani

March 26, 2015

2 Franck van Breugel and Hamzeh Roumani

Contents

1 Introduction 7

2 Implementing Static Features 9
2.1 Introduction . 9

2.1.1 What are Utility Classes? . 9
2.1.2 Why are Utility Classes Needed? . 10
2.1.3 UML and Memory Diagrams . 10
2.1.4 Check your Understanding . 12

2.2 How: The Definition of a Utility Class . 12
2.2.1 Class Structure . 12
2.2.2 Declaring and Initializing Attributes . 13
2.2.3 The Constructor Section . 14
2.2.4 Defining Methods . 14
2.2.5 Testing a Utility Class . 16
2.2.6 Check your Understanding . 17

2.3 Arguments versus Parameters . 17
2.3.1 Passing Arguments By Value . 17
2.3.2 Initializing Parameters . 20
2.3.3 Attribute Shadowing . 22
2.3.4 Method Overloading and Binding . 22
2.3.5 Check your Understanding . 22

2.4 Preconditions versus Validation . 23
2.4.1 Preconditions and the Client . 23
2.4.2 Validation and the Implementer . 24
2.4.3 Check your Understanding . 25

2.5 Documenting a Utility Class . 25
2.5.1 API Generation through javadoc . 25
2.5.2 Documenting Preconditions and Exceptions . 27
2.5.3 Check your Understanding . 30

2.6 Beyond the Basics . 30
2.6.1 Using an Interface to Declare Parameters . 30
2.6.2 Using Generics for Parameters and Returns . 31
2.6.3 Check your Understanding . 32

3

4 Franck van Breugel and Hamzeh Roumani

2.6.4 Generics with Wildcards . 33
2.6.5 Loop Invariants . 34
2.6.6 Hoare Logic . 35

3 Implementing Non-Static Features 41
3.1 Introduction . 41

3.1.1 Classes with only Non-Static Features . 41
3.1.2 UML and Memory Diagrams . 41
3.1.3 Check your Understanding . 43

3.2 How: The Class Definition . 43
3.2.1 Class Structure . 43
3.2.2 Declaring and not Initializing Attributes . 44
3.2.3 The Constructor Section . 45
3.2.4 Defining Methods . 48
3.2.5 Documenting a Class . 53
3.2.6 Testing a Class . 53

3.3 Beyond the Basics . 54
3.3.1 Avoiding Code Duplication . 54
3.3.2 Immutable Objects . 57
3.3.3 Attribute Caching . 59
3.3.4 Class Invariants . 60
3.3.5 The hashCode Method . 61
3.3.6 Validation and the Implementer . 62
3.3.7 Check your Understanding . 64

4 Mixing Static and Non-Static Features 65
4.1 Introduction . 65
4.2 Static versus Non-Static Features . 65
4.3 Interaction of Static and Non-Static Attributes . 66

4.3.1 Incorporating an Invocation Counter . 66
4.3.2 Stamping a Serial Number on Objects . 67

4.4 Two Design Patterns . 68
4.4.1 Maintaining a Singleton . 68
4.4.2 Enforcing One Instance Per State . 69
4.4.3 Check you Understanding . 71

4.5 Beyond the Basics . 71
4.5.1 Synchronized Methods . 71

5 Implementing Aggregation and Composition 75
5.1 Implementing Aggregation . 75

5.1.1 What is Aggregation? . 75
5.1.2 UML and Memory Diagrams . 75
5.1.3 The Attributes Section . 77
5.1.4 The Constructors Section . 77

March 26, 2015 5

5.1.5 The Methods Section . 78
5.1.6 Beyond the Basics . 82

5.2 Implementing Composition . 88
5.2.1 What is Composition? . 88
5.2.2 UML and Memory Diagrams . 89
5.2.3 The Attributes Section . 90
5.2.4 The Constructors Section . 90
5.2.5 The Methods Section . 92
5.2.6 Beyond the Basics . 94

5.3 Implementing Aggregation Using Collections . 97
5.3.1 What is a Collection? . 97
5.3.2 The Attributes Section . 97
5.3.3 The Constructors Section . 99
5.3.4 The Methods Section . 105
5.3.5 Beyond the Basics . 106

6 Implementing Inheritance 109
6.1 What is Inheritance? . 109
6.2 UML and Memory Diagrams . 109
6.3 The GoldenRectangle Class . 110

6.3.1 The Attributes Section . 111
6.3.2 The Constructors Section . 111
6.3.3 The Methods Section . 113

6.4 The PricingException Class . 119
6.4.1 The Attributes Section . 121
6.4.2 The Constructors Section . 121
6.4.3 The Methods Section . 122

6.5 The ColouredRectangle Class . 122
6.5.1 The Attributes Section . 122
6.5.2 The Constructors Section . 123
6.5.3 The Methods Section . 123

6.6 Implementing Abstract Classes . 124
6.7 Implementing Interfaces . 127
6.8 Beyond the Basics . 128

6.8.1 The getVolume Method . 128
6.8.2 Preconditions . 130
6.8.3 Postconditions . 132
6.8.4 Exceptions . 132
6.8.5 Final Methods and Final Classes . 133
6.8.6 The equals Method Revisited . 133
6.8.7 Substitution Principle . 134
6.8.8 Threads . 135

7 Implementing Graphical User Interfaces 139

6 Franck van Breugel and Hamzeh Roumani

7.1 Introduction . 139
7.2 Dynamic Menu . 141

7.2.1 The Model Class . 142
7.2.2 The View Class . 146
7.2.3 The Controller Class . 150
7.2.4 The Main App . 155

7.3 Resetting the Counts . 156
7.3.1 The Model Class . 157
7.3.2 The View Class . 157
7.3.3 The Controller Class . 159

7.4 A Round Button . 159

8 Recursion 163
8.1 Introduction . 163
8.2 Proving Correctness and Termination . 165
8.3 Recursive Methods that Return an Integer . 167
8.4 Recursive Methods for Lists . 170

9 Arrays 177
9.1 Arrays . 177

9.1.1 What is an Array? . 177
9.1.2 Memory Diagrams . 179

9.2 Implementing a List by means of an Array . 180
9.2.1 Introduction . 180
9.2.2 The Class Header . 181
9.2.3 The Attributes Section . 181
9.2.4 The Constructors Section . 182
9.2.5 The Methods Section . 185
9.2.6 The iterator Method . 191
9.2.7 Unbounded Size . 194

9.3 Command Line Arguments . 194
9.4 Beyond the Basics . 195

9.4.1 The getSize Method . 195
9.4.2 The contains and remove Methods . 197
9.4.3 The BoundedArrayListIterator as an Inner Class 198

A Running Time Analysis 201

Chapter 1

Introduction

In the course Introduction to Computer Science I, we took the client’s view. We used classes to write
applications that consisted of a single main method. In the course Introduction to Computer Science II, we
will focus on the implementer’s view. We will concentrate on implementing classes. In particular, we will
focus on the following task: given an API, implement it. As we will see, implementers of a class often use
other classes in their implementation. Therefore, the skills that we developed in Introduction to Computer
Science I will be needed in Introduction to Computer Science II.

7

8 Franck van Breugel and Hamzeh Roumani

Chapter 2

Implementing Static Features

2.1 Introduction

2.1.1 What are Utility Classes?

Recall that a class has attributes, constructors and methods. Most classes cannot be used unless they are
instantiated first. That is, one first has to create an object, which is called an instance of the class. Such an
instance is typically created by using the new keyword and by invoking a constructor. The creation of an
object allocates a block of memory for the attributes of the class (this can be thought to be done by new)
and assigns (initial) values to those attributes (this is done by the constructor).

But what if a class has no attributes at all, that is, its objects are stateless? Or, what if all objects of a
class have the same attribute values, that is, the same state? In both cases, there is no need to create objects
because doing so would waste valuable resources (memory and time). Such a class is called a utility, and
in it, the attributes are associated with the class itself, not with its objects. Indeed, we cannot instantiate a
utility class and we will not find a constructor section in its API.

In Java, we recognize a utility from its API by noting that all its features (both attributes and methods)
are static.

Since a utility cannot be instantiated, its client must access its public attributes and invoke its public
methods by using the class name. As an example, consider the Math utility whose API is shown here and
which is a simplified version of the one in the package java.lang. The following fragment shows how a
client can use this utility class.

1 output.printf("The value of PI is: %.f%n%n", Math.PI);
2

3 output.println("Enter two integers:");
4 int first = input.nextInt();
5 int second = input.nextInt();
6 output.printf("The smaller of the two entries is: %d%n%n",
7 Math.min(first, second));
8

9 output.println("Enter a base and an exponent:");
10 int base = input.nextInt();

9

http://www.cse.yorku.ca/~buildIt/api//1/Math.api/Math.html

10 Franck van Breugel and Hamzeh Roumani

11 int exponent = input.nextInt();
12 output.printf("The entered power is: %d%n", Math.pow(base, exponent));

The full example can be found by following this link.

2.1.2 Why are Utility Classes Needed?

A utility class is used in situations in which there is no need to have multiple copies of the class features,
that is, a single copy suffices. For example, a class that does not hold any state (that is, has no attributes)
is a good candidate for a utility class. A method in such a class has nothing to work with other than the
arguments passed to it, and its return (if any) must depend only on the values of these arguments. A second
example of a class that is appropriate for a utility is one that has a fixed state (that is, all its attributes are
static and final).

It should be noted that most, if not all, classes that make up a real-life application are not utilities. We
start with utility classes because they are simpler than non-utilities. Moreover, the skills we will acquire in
implementing them apply as-is to non-utility classes.

2.1.3 UML and Memory Diagrams

The Unified Modeling Language (UML) allows us to represent utility classes through diagrams. A min-
imal UML class diagram consists of a rectangular box that contains the name of the class preceded by
the word utility between two guillemets, as shown below. The class name can be fully qualified, with
its package and sub-package names, but with a double-colon (rather than a dot) as the separator character.

〈〈utility〉〉
java::util::Math

If additional features need to be exposed then a second (and a third) box can be added to hold the
attributes (and methods) of the utility, as shown below. Since in a utility classes all these features are static,
they are underlined (only their names are underlined). The + sign appearing before a feature indicates that
the feature is public.

〈〈utility〉〉
java::util::Math

+ E : double
+ PI : double

http://www.cse.yorku.ca/~buildIt/code//1/MathClient.java.txt

March 26, 2015 11

〈〈utility〉〉
java::util::Math

+ E : double
+ PI : double
+ abs(int) : int
+ abs(double) : double
+ pow(int, int) : int

In addition to UML diagrams, we sometimes use memory diagrams to show how different classes reside
in memory. For example, the memory diagram below contains two class blocks representing the client class
named MathClient residing in memory beginning at address 64 and the Math utility class at address 800.
The addresses used in the figure are of course arbitrary.

0
1
...

64 MathClient class
...

800 Math class
...

More details can be provided in these memory diagrams. For example, in the memory diagram below
the class block of the Math utility class also contains the constants E and PI. Furthermore, this more
detailed memory diagram contains an invocation block representing the invocation of the main method of
the MathClient class. This diagram models memory after the user has entered the values 3 and 7 but
before the user has entered the values for the base and exponent.

12 Franck van Breugel and Hamzeh Roumani

0
1
...

64 MathClient class
...

800 Math class
2.718281828459045 E
3.141592653589793 PI

...
940 MathClient.main invocation

3 first
7 second

base
exponent

...

2.1.4 Check your Understanding

Consider the following classes:

• Arrays in the java.util package,

• DocumentBuilderFactory in the javax.xml.parsers package,

• Collections in the java.util package and

• InputStream in the java.io package.

If you attempt to use the typical new keyword to instantiate any of these classes, you will find that the
attempt will fail. Does this mean that these classes are utilities? Argue that only two of them are utilities.

2.2 How: The Definition of a Utility Class

2.2.1 Class Structure

Implementing a utility class means writing its so-called class definition. Here is the general form:

1 // any needed package statement
2 // any needed import statements
3

4 public class SomeName
5 {
6 // the attribute section
7

8 // the constructor section

March 26, 2015 13

9

10 // the method section
11 }

The definition starts with a package statement if this class belongs to a named package. This statement
consists of the package keyword followed by the name of the package, followed by a semicolon. The
package statement is then followed by any needed import statements as is the case of client apps. The
body of the class has three sections, one for attributes, one for constructors, and one for methods, which is
reminiscent of the API structure. These three sections may appear in any order but, as a matter of style, we
will adhere to the above order.

2.2.2 Declaring and Initializing Attributes

The state of a utility class is held in its static attributes. If a utility class does not have state, the attribute
section is omitted. Otherwise, it contains one definition per attribute. The definition has one of the two
following general forms:

access static type name = value;

or

access static final type name = value;

It should not be surprising that the keyword static is present; after all, we are studying utility classes in
this chapter and all features in a utility class are static. Here is an explanation of each of the remaining
elements:

• access (also known as the access modifier) can be either public, which means this is a field, or
private, which means it is invisible to the client.1 It is a key software engineering guideline to
keep all non-final attributes private. First of all, it forces the client to use a mutator and, hence,
prevents the client from assigning wrong values to them, for example, assigning a negative value to an
attribute intended to hold the age of a person. Secondly, private attributes do not show up in the API
and, hence, declaring attributes private (rather than public) simplifies the API. Finally, since private
attributes do not show up in the API, their type and name can be changed by the implementer without
introducing any changes to the API.

• final (appearing in the second general form above) is used if this attribute is a constant.

• type specifies the type of this attribute. It can be primitive or non-primitive.

• value specifies the initial value of this attribute and should be compatible with its type, that is, this
should be a valid assignment statement.

Here is an example:

1The access modifier in Java can also be protected or left blank. In this book, we will only consider attributes that are
public or private.

14 Franck van Breugel and Hamzeh Roumani

1 public class Math
2 {
3 public static final double PI = 3.141592653589793;
4

5 ...
6 }

When we define attributes in a utility class, we should keep the following in mind:

• The scope of an attribute is the entire class. In contrast, the scope of a local variable, which also has a
type and holds a value, is restricted to the block in the constructor or method in which it is declared.
In addition, local variables must be initialized before being used, that is, the compiler does not assign
default values to them.

2.2.3 The Constructor Section

The constructor section of a utility class named SomeName consists of a single statement:

1 private SomeName(){}

It is not surprising that the constructor has the same name as the class but this code looks rather odd: why is
the constructor private and why is it empty? And if it is meant to be empty then why is it included at all in
the definition?

Recall that utility classes are never instantiated, and hence, there should not be a constructor section in
their APIs. This implies that there should not be any public constructor in the class definition of a utility.
But when the Java compiler encounters a class without any constructor at all, it automatically adds a public
constructor to it. To prevent this from happening, we add the above private constructor. Its body is empty
because we really do not need a constructor; it is there only to thwart the compiler’s attempt at adding a
public one.

Based on this, the class definition of our example utility class becomes:

1 public class Math
2 {
3 public static final double PI = 3.141592653589793;
4

5 private Math(){}
6

7 ...
8 }

2.2.4 Defining Methods

The method section of the definition of a utility class contains one definition per method. The method header
has the following general form:

access static type name parameter-list

March 26, 2015 15

or

access static type name parameter-list throws type

As in the case of attributes, it should not be surprising that the keyword static is present. And also as
for attributes, the access modifier can be either public or private.2 Recall that the return type is either
void or the actual type of the return.

Let us look at some of the methods of the Math class. Consider min(int, int), which returns the
smaller of its two arguments. It is a public method with a return type of int. Hence, its definition must
have the following header:

1 public static int min(int a, int b)

When a client program invokes this method by writing something like Math.min(2, -1), control is
transferred to the method with a initialized to 2 and b initialized to -1. The body of the method does the
real work. It should figure out which parameter (a or b) is smaller and return it to the client. Returning the
result to the client is expressed by means of the return statement. This statement consists of the keyword
return followed by an expression. The type of the expression should be compatible with the return type
of the method. The execution of the return statement results in the value of the expression being returned to
the client. Here is a possible implementation of the min method:

1 int min;
2 if (a <= b)
3 {
4 min = a;
5 }
6 else
7 {
8 min = b;
9 }

10 return min;

In fact, we can implement this functionality in one statement:

1 public static int min(int a, int b)
2 {
3 return a <= b ? a : b;
4 }

Next, let us look at the pow method. It is a public method that takes two int arguments and return
an int (being the first argument raised to the second). Hence, its definition must have this layout:

1 public static int pow(int base, int exponent)
2 {
3 ...
4 }

2The access modifier in Java can also be protected or left blank. In this book, we will only consider methods that are
public or private.

16 Franck van Breugel and Hamzeh Roumani

In the body of this method we must compute and return baseexponent, that is,

base× base× · · · × base︸ ︷︷ ︸
exponent times

To do this, we need to set up a loop. And since we know how many times the loop should iterate, we use a
for loop:

1 int pow = ?
2 for (int i = 0; i < ?; i++)
3 {
4 pow = pow * base;
5 }
6 return pow;

Next, we need to determine the initial value of the local variable pow and the number of iterations of the
loop. A loop invariant can help us do this. Recall that a loop invariant is a Boolean expression that holds
at the beginning of every iteration. It usually tells us something about the variables that play a key role
in the loop. In the above loop, the variables pow and i play a key role. They are related as follows:
pow = basei. We will take this as our loop invariant. Now we can determine the initial value of pow.
Since the loop invariant has to hold at the beginning of the first iteration of the loop and since i is initialized
to 0, we can conclude that we have to initialize pow to 1 since base0 = 1. The loop invariant also tells
us when to exit the loop. We want to end the loop when pow = baseexponent. So when we reach an
iteration at which i = exponent, the loop condition should evaluate to false. Therefore, as long as i
!= exponent (or i < exponent) we should continue the loop. The complete implementation of our
Math utility can be found by following this link.

2.2.5 Testing a Utility Class

In order to test a utility class we need to write a client class, that is, an app that invokes every method in it
and verifies that it behaves according to its specification. In the lingo of the software development process
such a test is known as a unit test as opposed to an integration test, which is performed after all classes in
the application have been built.

Testing a method in a utility class involves generating a test vector (a collection of test cases that meet
the precondition of the method) and then invoking the method for each test case. The method’s return is
then checked against an oracle to ensure that the method’s postcondition is met.3

As an example, let us write a unit test for our Math class and let us focus only on its min(int, int)
method. Since any int is a valid argument for this method, we will use the nextInt() method of the
java.util.Random class to generate random arguments that are uniformly distributed over the entire
int range. The following fragment demonstrates this step:

1 Random random = new Random();
2 int a = random.nextInt();
3 int b = random.nextInt();

3In general, one must also ensure that the values of all attributes remain consistent with the class invariant. But since most utility
classes do not have non-constant attributes, we will ignore this part of the test.

http://www.cse.yorku.ca/~buildIt/code//1/Math.java.txt

March 26, 2015 17

4 int min = Math.min(a, b);

Our test vector will thus consist of several, say 100, of such (a, b) pairs. Furthermore, we include some
boundary cases, that is, pairs (a, b) where either a or b is the smallest or largest number that can be
represented as an int.

The next step involves determining if the method satisfies its postcondition, that is, if min is indeed the
smaller of a and b. We will choose direct verification as our oracle:

1 if (a < min || b < min || (a != min && b != min))
2 {
3 output.print("The method failed the test case: ");
4 output.printf("a = %d, b = %d%n", a, b);
5 }

The above process is repeated for each of the remaining test cases in our test vector. The full tester can be
found by following this link.

Instead of developing a class to test the min method from scratch, we can also use JUnit to test the min
method. A tester based on JUnit can be found by following this link.

2.2.6 Check your Understanding

Write a utility that contains the method:

1 public static long factorial(int n)

The method computes and returns the factorial of the given integer. The return is a long (rather than
an int) because the factorial function grows rapidly and quickly exceeds the int range. You can safely
assume that the passed integer is not negative (we will see later in this chapter how to better handle this
condition). Test your implementation using the integers [0,20] as test vector and your calculator as
oracle. First, develop a client class, as described above, to test the factorial method. Second, use JUnit
to develop a tester for the method factorial.

2.3 Arguments versus Parameters

2.3.1 Passing Arguments By Value

Object-oriented programming aims at creating a layer of separation between the client’s code and the im-
plementer’s code in order to reduce their complexities. The client’s code and the implementer’s code cannot
operate in total isolation, however, because they need to cooperate through method invocation. Hence, a
mechanism needs to be in place to facilitate such cooperation without allowing either party to modify the
variables of the other party without their explicit knowledge. This mechanism is known as pass-by-value.
We examine it from the client’s view in this section and look at its impact on the implementer in the next
section.

Consider the following fragment of client code that invokes the abs method of the Math class.

http://www.cse.yorku.ca/~buildIt/code//1/MathTester.java.txt
http://www.cse.yorku.ca/~buildIt/code//1/MinTester.java.txt

18 Franck van Breugel and Hamzeh Roumani

1 int x = -1;
2 int y = 0;
3 y = Math.abs(x);

Having reached the beginning of line 3, our memory model contains the following invocation block.

...
156 Client.main invocation

−1 x
0 y

...

Assume that the implementer’s code of the abs method is the following.

1 public static int abs(int a)
2 {
3 int abs;
4 if (a < 0)
5 {
6 abs = -a;
7 }
8 else
9 {

10 abs = a;
11 }
12 return abs;
13 }

Once the absmethod is invoked, an invocation block is added to our memory diagram. When the invocation
reaches the beginning of line 12 of the abs method, our memory diagram looks as follows.

...
156 Client.main invocation

−1 x
0 y

...
244 Math.abs invocation

−1 a
1 abs

...

Note that x and a live at different memory locations. When the abs method is invoked, the value of x (not
its memory location) is passed. Hence, the name pass-by-value. As a consequence, changes to a have no
impact on x.

March 26, 2015 19

What were the values of the client variables x and y before the invocation and what are their values
afterward? The value of y was 0 and it has become 1. Hence, the invocation did result in a change in the
client’s data but this change did not take place implicitly or secretively; the client asked for it (through an
assignment statement) and was fully aware of its consequence (through the method’s postcondition). As
for x, its value was −1 prior to the invocation. If this value were to change afterwords then this would
be an implicit change that would take place without the client’s knowledge. Fortunately, the pass-by-value
mechanism prevents that, that is, the value of x remains −1 after the invocation regardless of how abs is
implemented.

In general, the comma-separated entities that appear between two parentheses after the method name in
an invocation statement are known as arguments. Hence, x in the above invocation is an argument. The fact
that the values of the arguments (and not their memory locations) are passed to the implementer guarantees
that the arguments remain intact no matter what the implementer does.

It is important to know that the pass-by-value mechanism remains in force even if the argument is an
object reference. In other words, an object reference argument is guaranteed not to change after an invocation
(but the state of the object to which it refers might). Let us look at an example that illustrates this point:
assume that there is a utility class called Doubler with the method:

1 public static void twice(Rectangle r)

The method takes a reference to a Rectangle object and doubles the sizes of the rectangle’s width and
height. The API of the Rectangle class can be found following this link. Here is a fragment of a client
app that creates a Rectangle with width 3 and height 4 and then invokes the above method:

1 final int WIDTH = 3;
2 final int HEIGHT = 4;
3 Rectangle rectangle = new Rectangle(WIDTH, HEIGHT);
4 Doubler.twice(rectangle);

In this example, the client passes the argument rectangle to the method. Based on our understanding
of the pass-by-value mechanism, the method cannot change rectangle but it can change (mutate) the
Rectangle to which rectangle points.

...
64 Client.main invocation

3 WIDTH
4 HEIGHT
100 rectangle

...
100 Rectangle object

3 width
4 height

...

...
64 Client.main invocation

3 WIDTH
4 HEIGHT
100 rectangle

...
100 Rectangle object

6 width
8 height

...

The memory diagram above assumes that the Rectangle object resides in a memory block that starts
at address 100. The diagram shows that the value of rectangle was 100 before the invocation and

http://www.cse.yorku.ca/~buildIt/api//1/Rectangle.api/Rectangle.html

20 Franck van Breugel and Hamzeh Roumani

remained 100 after it, as expected. The object itself was mutated as evidenced by the doubling of its sides.
The fact that the object was changed does not contradict the pass-by-value mechanism because the object
itself is not an argument; its reference is. 4

2.3.2 Initializing Parameters

We saw in the previous section that the pass-by-value mechanism allows the client to establish a one-way
communication channel with the implementer. The client uses this channel to pass the values of the ar-
guments to the implementer knowing that these values cannot change upon return. We now look at this
mechanism from the implementer’s side.

The implementer uses the term parameters to refer to the variables that appear between parentheses
in the method header. For example, the header of the twice method that was introduced in the previous
section contains one parameter named r:

1 public static void twice(Rectangle r)

We see that parameters are declared in the header but how are they initialized? The pass-by-value mech-
anism states that parameters are initialized to the passed values of the arguments. Hence, the parameter r
in the above header will have 100 as its initial value (see memory diagram) because this is the value of the
argument passed by the client.

...
64 Client.main invocation

3 WIDTH
4 HEIGHT
100 rectangle

...
100 Rectangle object

3 width
4 height

...
182 Doubler.twice invocation

100 r
...

We can see how the one-way channel is implemented: since the client and the implementer are using two
distinct sets of variables linked only through initialization, it is clear that the implementer cannot possibly
modify any of the client’s arguments.

Let us now implement the twice method. We need to determine the sides of the passed Rectangle
and double them. Here is the implementation:

4Recall that an object is a block in memory that belongs to neither the client nor the implementer. Programs can own object
references, and they can make the references point at an object, but they do not own objects.

March 26, 2015 21

1 public static void twice(Rectangle r)
2 {
3 int width = r.getWidth();
4 r.setWidth(2 * width);
5 int height = r.getHeight();
6 r.setHeight(2 * height);
7 }

Note that the method receives the value of the object reference (that is, the address of the object in memory)
and then mutates the object (this is, changes its state in place); it does not change the address of the object
in memory.

The above method definition can be condensed as follows.

1 public static void twice(Rectangle r)
2 {
3 r.setWidth(2 * r.getWidth());
4 r.setHeight(2 * r.getHeight());
5 }

As a second example of the impact of pass-by-value on the implementer, suppose a client writes a main
method containing the following code snippet.

1 int x = 1;
2 int y = 2;
3 Util.swap(x, y); // swaps the values of x and y

The implementer is asked to write the method swap that allows its client to swap two int values:

1 public static void swap(int a, int b)
2 {
3 ?
4 }

The pass-by-value mechanism makes implementing this method impossible! No matter how the values of
the two parameters a and b are interchanged, the arguments x and y will not be affected. This reflected in
the following memory diagram.

...
64 Client.main invocation

1 x
2 y

...
152 Util.swap invocation

2 a
1 b

...

22 Franck van Breugel and Hamzeh Roumani

2.3.3 Attribute Shadowing

We saw in the previous section that parameters are declared in the header of the method and are initialized
using the passed values of the arguments. Hence, they behave like local variables and have a scope that
extends from the very beginning of the method (its opening brace) to its end (its closing brace). Recall that
attributes are declared outside all methods and that their scope encompasses the entire class. This raises a
question: what if one of the parameters of a method in a class happens to have the same name as an attribute
of that class? For example, a utility Util may have an attribute named count and the method:

1 public static void increment(int count)
2 {
3 count = count + count;
4 ...
5 }

Which count is being referenced here, the attribute or the parameter? Java in this case gives the priority to
the parameter, that is, the parameter shadows the attribute (hides it). The above method will therefore double
the value of its parameter, not the attribute. This situation is clearly confusing and can lead to logic errors.
Because of this, we will, as a matter of style, always use the utility name when we refer to its attributes.
Hence, if the above method were meant to increment the class attribute by the value of the parameter, its
code should have been written as follows:

1 public static void increment(int count)
2 {
3 Util.count = Util.count + count;
4 ...
5 }

2.3.4 Method Overloading and Binding

The argument-parameter mapping dictates how the compiler should bind an invocation to a method. Given
an invocation of the form C.m(arguments), the compiler starts by ensuring that class C is available
and does have a method named m. Next, the compiler examines the method’s signature to ensure that
the values of the arguments can indeed be assigned to the method’s parameters. This requires that the
number of arguments is equal to the number of parameters and that the arguments are compatible with their
corresponding parameter types.

When a method is overloaded and binding can be made with more than one variant of the method, the
compiler tries to limit the possibilities by using the most specific policy: select the method that requires the
least amount of promotion. If that fails, the compiler issues an ambiguous invocation error.

2.3.5 Check your Understanding

Consider the utility class PassByValue whose source code is shown here. This utility class is used by the
following client:

http://www.cse.yorku.ca/~buildIt/code//1/PassByValue.java.txt

March 26, 2015 23

1 import java.io.PrintStream;
2 import java.util.ArrayList;
3 import java.util.HashSet;
4 import java.util.List;
5 import java.util.Set;
6

7 public class PassByValueClient
8 {
9 public static void main(String[] args)

10 {
11 PrintStream output = System.out;
12

13 int a = 1;
14 PassByValue.add(a);
15 output.println(a);
16

17 Set<String> b = new HashSet<String>();
18 PassByValue.add(b);
19 output.println(b.size());
20

21 List<Integer> c = new ArrayList<Integer>();
22 PassByValue.add(c);
23 output.println(c.size());
24 }
25 }

Predict the output of this client. You can check the correctness of your prediction by saving the above client
to a file and then compiling it and running it.

2.4 Preconditions versus Validation

2.4.1 Preconditions and the Client

Before invoking a method, a client must ensure that its precondition is met. Failing to do so can lead to
unpredictable results. Consider, for example, the following method which computes and returns the factorial
of its argument:

1 public static long factorial(int x)

If the contract of this method specifies the precondition “x >= 0”, then it is the client’s responsibility to
ensure that x is not negative.

What happens if we invoke this method and pass −1? The result is unpredictable: the implementer
may have used an algorithm that crashes if x is negative, and in that case an exception will occur. It is
also possible that the implementer may have started by computing the absolute value of x, and in that case

24 Franck van Breugel and Hamzeh Roumani

the wrong result, 1, is returned, and this will likely lead to a logic error in the client’s program. It is even
possible that the method invocation does not terminate. What is worse, the result is not guaranteed to be the
same every time because the implementer can change the algorithm (in a future release or dynamically for
web services) without informing the client (recall that it would break the encapsulation if the implementer
informed the client). In conclusion, the client cannot rely on any particular outcome (an exception or a
special return) if a method is invoked when its precondition does not hold.

It is clear from the above that the precondition is 100% in the client’s concern. The implementer can
assume that the precondition is met and should not be concerned with the possibility that it is not.

2.4.2 Validation and the Implementer

If the contract of a method does not specify a precondition, the client can invoke it without any validation.
Consider, for example, the following method in the java.lang.Math class which computes and returns
the positive (real) square root of its argument:

1 public static double sqrt(double x)

The contract (that is, the API) does not specify a precondition, that is, the precondition is true. Hence, a
client can invoke it and pass any double value. In particular, the client can pass a negative value for x and
still expect the method to behave in a predictable manner. Indeed, the API of this method specifies (as part
of the postcondition) that if x is less than zero then the return is Double.NaN, the special double that
indicates an out-of-range value. Hence, detecting a negative value (that is, validating the parameters) in the
absence of a precondition is 100% in the implementer’s concern. The implementation of the above method
must therefore have the following structure:

1 public static double sqrt(double x)
2 {
3 double sqrt;
4 if (x < 0)
5 {
6 sqrt = Double.NaN;
7 }
8 else
9 {

10 // compute the square root and assign it to sqrt
11 }
12 return sqrt;
13 }

Now let us assume that the sqrt method was designed differently, which would result in a different
API entry. Instead of returning a special value, an exception is thrown when x is less than zero.

1 public static double sqrt(double x) throws IllegalArgumentException
2 {
3 double sqrt;
4 if (x < 0)

March 26, 2015 25

5 {
6 throw new IllegalArgumentException("Argument of sqrt method cannot be

negative");
7 }
8 else
9 {

10 // compute the square root and assign it to sqrt
11 }
12 return sqrt;
13 }

Note that throws IllegalArgumentException has been added to the header of the method.
As a matter of good style, one should leave exceptions to exceptional situations. Hence, if the problem is

plausible and likely to occur under normal conditions then a special return is preferable (for example, adding
a duplicate element to a Set). On the other hand if the problem is unpredictable (that is, exceptional) then
it is preferable to throw an exception (for example, connecting to a remote URL while the network is down).
No matter what action we choose, we have to make sure it is documented in the postcondition either under
Returns or Throws.

In summary, the onus is on the implementer if no precondition is specified. The implementer must plan
for special conditions, determine what to do when they occur, and document the taken action as part of the
postcondition.

2.4.3 Check your Understanding

The utility class PreVal has the API shown here. As we can see from the API, it has three methods:
loadFactor, markup, and deviation. Te method loadFactor works by invoking markup, and
markup works by invoking deviation. In other words, loadFactor is a client of markup, and
markup is a client of deviation.

Assume that deviation has already been implemented (for the issue at hand, it does not really matter
what it computes and returns). How would we implement loadFactor and markup? Make sure you
properly assume the responsibilities of client and/or implementer when you handle pre- and postconditions.

2.5 Documenting a Utility Class

2.5.1 API Generation through javadoc

Utility classes (and, in fact, all non-app classes) have two types of documentation: internal and external.
Internal documentation appears in the form of one-line comments (prefixed by //) or multi-line comments
(surrounded by /* and */). Its objective is to explain to implementers how the class works. In contrast,
external documentation explains to clients what the class does, that is, its usage. The external documentation
of a class is also known as its contract or API.

It may seem natural to separate the class definition from its external documentation, that is, store the
former in one file (for example, Math.java) and the latter in another (for example, Math.html). After
all, these two files have different formats: general text versus HTML. Such separation, however, does not

http://www.cse.yorku.ca/~buildIt/api//1/PreVal.api/PreVal.html

26 Franck van Breugel and Hamzeh Roumani

work well because, in real life, one finds that the API changes as the class is being implemented. The person
maintaining the API may make changes to it and forget to inform the person maintaining the source file, and
vice versa. Such loss of synchronization leads to an API that describes a certain behaviour while the actual
class has a different behaviour.

The ideal solution is to keep the external documentation embedded in the source file and to have a tool
that extracts it and formats it as HTML. This way, the HTML file would be for output-only and no one would
attempt to edit it (because it is overwritten every time the tool is executed). This is the approach adopted by
Java.

The API text appears within the class definition as multi-line comments surrounded by /** (two as-
terisks instead of one) and */. These comments are placed immediately before every public attribute,
constructor, and method in the class.5 In addition, such comments are needed before the class header to
document the class as a whole; what it encapsulates, its invariants, who implemented it, etc.

As an example, let us document one of the min methods of the Math class:

1 /**
2 Returns the smaller of two int values. If the arguments have the
3 same value, the result is that same value.
4

5 Parameters:
6

7 @param a an argument.
8 @param b another argument.
9 @return the smaller of a and b.

10 */
11 public static int min(int a, int b)
12 {
13 ...
14 }

The first sentence gives an overall description of what the method does. When we write external docu-
mentation, we have to keep in mind that all text will be converted to HTML. Hence, line breaks, tabs, and
other whitespace characters are all treated as a single space. If we feel the need to format the output, use
HTML tags such as <code>,
, , etc. The API extraction tool will place the first sentence of
our documentation (up to the first period) in the Method Summary section. The Method Detail section will
contain this first sentence plus any following sentences.

Embedded in the documentation are special tags identified by the @ prefix. In the above example, the
@param is used to document every parameter of the method. The @return tag describes what the method
returns. The generated API is given below.

5It is a good habit to also document private features in addition to public ones. Even though such documentation is not visible
to the client, it will prove invaluable to the implementer who is maintaining the class.

March 26, 2015 27

min

public static int min(int a,
int b)

Returns the smaller of two int values. If the arguments have the same value, the result is that same value.
Parameters:
a - an argument.
b - another argument.
Returns:
the smaller of a and b.

If a method does not take any parameters then no @param tag should be used. Similarly, there should
not be a @return tag if the method is void.

Here is an example for an attribute:

1 /**
2 The double value that is closer than any other to pi, the ratio of the
3 circumference of a circle to its diameter.
4 */
5 public static final double PI = 3.141592653589793;

No special tags are normally needed for attributes.
Finally, here is an example for the documentation of the class as a whole (to appear at the top of the

API):

1 /**
2 The class Math contains some methods for performing basic numeric operations
3 and some basic constants. The implementations of the methods have been
4 simplified and may not handle special cases correctly.
5

6 @see java.lang.Math
7 */
8 public class Math

The @see tag allows us to cross reference a second class (or feature) that is related to the current one.
Once a class is documented, we can extract the API by using the following command:

javadoc -d dir Math.java

The d switch allows us to specify a directory dir in which the generated API should be stored. The javadoc
tool has many other switches and options. We will discuss some of those later in this chapter.

2.5.2 Documenting Preconditions and Exceptions

Consider the following method in our Math class:

28 Franck van Breugel and Hamzeh Roumani

1 /**
2 Returns the value of the first argument raised to the second argument.
3

4 @param base the base.
5 @param exponent the exponent.
6 @return base^{exponent}.
7 */
8 public static int pow(int base, int exponent)

It is clear from the return type that the class designer is not interested in cases in which exponent is
negative. Ensuring this can be either left to the client, by making it a precondition, or to the implementer,
by addressing it in the postcondition. Either way, the API must reflect and document the choice, and that is
what we focus on in this section.

Documenting a Precondition

If the designer opts for a precondition, we add a tag to specify it. Since Javadoc does not currently have such
a tag, we add a custom one and name it pre. (as a matter of style, we put a period at the end of user-defined
tags to distinguish them from built-in ones). The documentation becomes:

1 /**
2 Returns the value of the first argument raised to the second argument.
3

4 @param base the base.
5 @param exponent the exponent.
6 @pre. exponent >= 0.
7 @return base^{exponent}.
8 */
9 public static int pow(int base, int exponent)

In order to recognize the new tag and place it in between the parameters and the return in the generated API,
a few switches need to be used in the javadoc command:
javadoc -tag param -tag pre.:a:"Precondition: " -tag return -d dir Math.java

The resulting API is given below.

March 26, 2015 29

pow

public static int pow(int base,
int exponent)

Returns the value of the first argument raised to the power of the second argument.
Parameters:
base - the base.
exponent - the exponent.
Precondition:
exponent >= 0.
Returns:
baseexponent.

In order to create links to other classes, we can exploit the -link option. For example, to create links
to classes in the Java standard library, the option

-link https://docs.oracle.com/javase/8/docs/api/

can be used.

Documenting an Exception

If the designer opts for throwing an exception, we used the built-in tag throws to document this action.
Assuming that IllegalArgumentException is to be thrown, the documentation becomes:

1 /**
2 Returns the value of the first argument raised to the second argument.
3

4 @param base the base.
5 @param exponent the exponent.
6 @return base^{exponent}.
7 @throws IllegalArgumentException if exponent < 0.
8 */
9 public static int pow(int base, int exponent) throws IllegalArgumentException

The resulting API is shown below.

30 Franck van Breugel and Hamzeh Roumani

pow

public static int pow(int base,
int exponent)

throws IllegalArgumentException

Returns the value of the first argument raised to the power of the second argument.
Parameters:
base - the base.
exponent - the exponent.
Returns:
baseexponent.
Throws:
IllegalArgumentException - if exponent < 0.

2.5.3 Check your Understanding

You implemented a utility class in Section 2.2.6 that included the following factorial method:

1 public static long factorial(int n)

Enhance your implementation by including the following features:

• Proper treatment of n ≥ 0 as a precondition.

• Full javadoc documentation of the class.

• Generation of the API.

2.6 Beyond the Basics

2.6.1 Using an Interface to Declare Parameters

Suppose that we are asked to implement a utility class that includes the following method:

1 public static int frequency(ArrayList<Long> list, long element)

The method counts and returns the number of times the long element appears in the passed ArrayList.
The return is 0 if element is not present in list. How would we implement this method? Think about it
and then write the code and test it.

Suppose that we were later asked to add a second method to our utility class, one with the following
header:

1 public static int frequency(LinkedList<Long> list, long element)

This method behaves exactly the same as the earlier one except it takes a LinkedList rather than an
ArrayList. We could add this method to our utility class (as an overloaded version of the earlier one)

March 26, 2015 31

but that would be a clear violation of a key software engineering principle that calls for avoiding code
duplication. If we think about the algorithm needed for either method, we will quickly realize that they
both use the same logic. Indeed, the needed methods (for example, list.size(), list.get(int),
or list.iterator()) are all present in the List interface. Hence, we could combine the above two
methods into just one by declaring the list parameter through its interface rather than its class:

1 public static int frequency(List<Long> list, long element)

Note that even though we focused on interfaces, the observation of this subsection applies as well to
abstract and concrete superclasses. For example, before implementing a method, say setTime, that takes
a parameter of type Time that extends Date, ask we can ask ourselves “Does the method’s logic depends
on the features of Time or on those of its superclass Date?” If it depends on those of Date then declare
its parameter as a Date type. This way, the method can be invoked with an argument of either type and still
function correctly.

Generally speaking, using the most general interface, class, or abstract class to declare parameters,
makes our methods more versatile because their parameters would be able to accommodate a larger set of
arguments.

2.6.2 Using Generics for Parameters and Returns

We saw that using an interface rather than a class to declare parameters allows us to consolidate

1 public static int frequency(ArrayList<Long> list, long element)

and

1 public static int frequency(LinkedList<Long> list, long element)

into one method

1 public static int frequency(List<Long> list, long element)

In this section we pursue a similar consolidation but in an orthogonal dimension: the type of the elements in
the list.

Let us start with a simple case in which we seek to support int in addition to long. Can a client
of the above method invoke it by passing a List<Integer> and an int? The answer is no because
List<Integer> is not a subclass of List<Long>. In general, there is no inheritance relation between
List<A> and List even if A is a subclass of B.6 Hence, even if we changed the header of our method
to

1 public static int frequency(List<Object> list, Object element)

the client would still not be able to invoke it by passing a List<Integer> and an int for the same
reason.

The solution is to use generics in our implementation. Rather than use Integer or Long to refer to
the type, let us use the type parameter T:

6The technical name for this behaviour is that generics are not covariant.

32 Franck van Breugel and Hamzeh Roumani

1 public static <T> int frequency(List<T> list, T element)

The token <T> before the return type declares that this is a generic method. We implement the body of the
method as if T were a concrete type. Here is a possible implementation:

1 public static <T> int frequency(List<T> list, T element)
2 {
3 int result = 0;
4 for (T e : list)
5 {
6 if (e.equals(element))
7 {
8 result++;
9 }

10 }
11 return result;
12 }

Generally speaking, using generics makes the methods more versatile without sacrificing type safety.7

2.6.3 Check your Understanding

We would like to write the utility class IntegerArrayList that contains the following method:

1 public static double sum(ArrayList<Integer> list)

The method returns the sum of the passed collection of integers. Implement the utility class, test it, and
make sure it behaves as specified.

We now seek to go beyond the basics by generalizing this method in two orthogonal ways. We will do
this in stages:

• Copy IntegerArrayList.java to IntegerCollection.java and refactor the method in
IntegerCollection so that its argument can be of type ArrayList<Integer>,
LinkedList<Integer>, TreeSet<Integer>, or HashSet<Integer>. Compile and test
the new utility class and make sure it behaves as specified.

• Copy IntegerArrayList.java to NumberArrayList.java and refactor the method in
NumberArrayList so that its argument is an ArrayList of any numeric type, for example
ArrayList<Integer>, ArrayList<Long>, ArrayList<Double>, etc. Compile and test
the new utility class and make sure it behaves as specified. Recall that all numeric types extend
Number. Note, however, that generics are not covariant, and hence, you cannot simply use
ArrayList<Number> because even though Integer is a Number, ArrayList<Integer>
is not an ArrayList<Number>.

7We may think that using <Object> for parameter declaration can achieve the same versatility as using generics. Doing so,
however, sacrifices type safety because it thwarts the type checking done by the compiler and invariably leads to crashes due to
illegal type casts.

March 26, 2015 33

• Create the NumberCollection utility class so that its sum method combines the above two gen-
eralizations, that is, it accepts any collection of any numeric type.

2.6.4 Generics with Wildcards

Given a list list of Date objects, we seek to write a utility class with a method named smaller that
determines if all elements of a given list are smaller than a given Date object element. We are not
concerned here with the details of the implementation of the method, just with its signature. Only the
fact that the method smaller will use the method compareTo to compare the elements of list with
element will play a role in our discussion below. One suggestion for the signature of smaller would be
to use:

1 public static boolean smaller(List<Date> list, Date element)

This signature, however, restricts the usability of the method to the Date type. We like to come up with
a signature that makes the method usable for any list of comparable objects and any object element that
can be compared with the list elements. For example, the list could be of type List<Time> and element
could be of type Date which is the superclass of Time and can be compared with it.

Next, we discuss five different proposals for a more versatile signature and briefly critique each proposal
by commenting on its type safety and versatility.

1 public static boolean smaller(List list, Object element)

This proposal is clearly not typesafe because it does guarantee that the list elements are comparable with
element. The implementer will not be able to invoke compareTo on element without casting it first,
and such a cast may lead to a runtime error.

1 public static <T> boolean smaller(List<T> list, T element)

Also this proposal is not typesafe because it does guarantee that T implements the Comparable interface.
This signature can thus lead to the same problems as the first one.

1 public static <T extends Comparable<T>> boolean smaller(List<T> list, T element)

In this case, the type parameter T is restricted: only a class like Date that implements the interface
Comparable<Date> can be used. This restriction can roughly be captured by the following UML-like
diagram.

Comparable<T>

T

OO

Note that the class Time that implements Comparable<Date> cannot be used. Hence, its applicability
is limited to lists of objects that can be compared with an object of the same type.

1 public static <T extends Comparable<? super T>> boolean smaller(List<T> list, T
element)

Also in this case, the type parameter T is restricted. This case is less restrictive than the previous one. The
? is called a wildcard. The pattern ? super T is matched by any super class of T or T itself. In this

34 Franck van Breugel and Hamzeh Roumani

case, the restriction can roughly be captured by the following UML-like diagram. In the diagram, we use
A +3 B to denote that class A extends class B or A equals B. The wildcard is represented by S in the

diagram.
S Comparable<S>

T

[c>>>>>>>

>>>>>>>

77

The class Datematches the pattern <T extends Comparable<? super T>> since the class Date
implements the interface Comparable<Date>. (In this case, both S and T are matched with Date.) Also
the class Time matches this pattern since the class Time implements the interface Comparable<Date>.
(In this case, S and T are matched with Date and Time, respectively.) However, the method cannot be
used for a List<Time> object and a Date object, since T would have to match Date but List<Time>
is not compatible with List<Date>.

1 public static <T> boolean smaller(List<? extends Comparable<? super T>> list, T
element)

To also capture the combination of a List<Time> object and a Date object we add another wildcard. In
this case, the restriction can roughly be captured by the following UML-like diagram. In the diagram, the
first wildcard is represented by R and the second one by S.

S Comparable<S>

T

KS

R

OO

If T is matched by Date, then List<Time> matches List<? extends Comparable<? super
T>> since the Time class implements the Comparable<Date> interface. (In this case, S and T are both
matched with Date and R is matched with Time.)

2.6.5 Loop Invariants

As we already mentioned earlier, a loop invariant is a Boolean expression that holds at the beginning of
every iteration of the loop. Every loop has many loop invariants. For example, the Boolean expression
true is a loop invariant for every loop. Recall that the Boolean expression true always holds and, hence,
holds at beginning of every iteration of any loop.

Let us consider the following code snippet, which is very similar to the body of the pow method.

1 int pow = 1;
2 int i = 0;
3 while (i < exponent)
4 {
5 pow = pow * base;
6 i++;
7 }
8 return pow;

March 26, 2015 35

As we already mentioned above, true holds at the beginning of every iteration of a loop and, hence, is a
loop invariant for the above loop. However, it does not say anything interesting about the loop.

The Boolean expression i >= 0 is also a loop invariant for the above loop. At the beginning of the first
iteration, the variable i has the value zero and, hence, the Boolean expression i >= 0 holds. Since the
variable i is incremented in the body of the loop, the loop invariant is maintained by the loop and, therefore,
holds the beginning of subsequent iterations as well. This loop invariant is more interesting.

The Boolean expression i <= exponent is a loop invariant for the above loop as well. From the
precondition exponent >= 0 and the fact that the variable i is initialized to zero, we can conclude that
the Boolean expression i <= exponent holds at the beginning of the first iteration of the loop. The body
of the loop is only executed if the Boolean expression i < exponent holds. In the body, the variable
i is incremented by one and, hence, the Boolean expression i <= exponent holds at the end of each
iteration (which is the beginning of the next iteration). This loop invariant can be used to conclude that the
Boolean expression i == exponent holds at the end of the loop.

As we have already seen earlier, the Boolean expression pow == basei is a loop invariant for the
above loop as well. We can also combine loop invariants. Since the Boolean expressions i <= exponent

and pow == basei hold at the beginning of every iteration of the loop, the Boolean expression i <=

exponent && pow == basei does as well and, hence, is a loop invariant as well. This loop invariant
can be used to prove that pow == baseexponent holds at the end of the above code snippet.

Coming up with a loop invariant, which tells us something essential about the loop, can be difficult.
There are tools that can help us with finding loop invariants. However, these tools only partially solve the
problem of finding an appropriate loop invariant. It can be shown that it is impossible to develop a tool that
can find an appropriate loop invariant for any loop.

2.6.6 Hoare Logic

In the previous section, we informally reasoned about loop invariants. In this section, we formalize this
reasoning. To formally prove that a Boolean expression is a loop invariant, or more generally that a Boolean
expression holds at a particular point in our code, we can use so-called Hoare logic.

This can be accomplished by annotating our code, that is, we add a special type of comments containing
Boolean expressions to our code. These comments are of the form

1 //@ assert P

where P is a Boolean expression.
Let P and Q be Boolean expressions and let c be some code. We will use

1 //@ assert P
2 c
3 //@ assert Q

to express

if the Boolean expression P holds immediately before the execution of the code c and the
execution of c terminates, then the Boolean expression Q holds immediately after executing c.

Sometimes, we write {P} c {Q} to represent the code and the Boolean expression concisely.
Let us have a look at several examples. We start with a simple example.

36 Franck van Breugel and Hamzeh Roumani

1 //@ assert true
2 i = 0;
3 //@ assert true

Obviously, after the execution of i = 0, the Boolean expression true holds. Although valid, this annota-
tion does not tell us anything interesting. In contrast,

1 //@ assert true
2 i = 0;
3 //@ assert i == 0

tells us that the value of i equals 0 after the assignment. Since the assignment i = 0 does not change the
value of exponent, we also have

1 //@ assert exponent >= 0
2 i = 0;
3 //@ assert i == 0 && exponent >= 0

Now consider the following annotation.

1 //@ assert i == 0
2 pow = 1;

3 //@ assert i == 0 && pow == basei

The above annotation tells us that if i equals 0 and we assign pow the value 1, then the value of i remains
0 and pow == 1 == base0 == basei. Since the assignment pow = 1 does not change the value of
exponent either, we also have

1 //@ assert i == 0 && exponent >= 0
2 pow = 1;

3 //@ assert i == 0 && pow == basei && exponent >= 0

All the above examples are instances of the following rule.

Proposition 1 Let v be a variable (either an attribute, a local variable or a parameter), e some expres-
sion and P a Boolean expression. Then {P[e/v]} v = e {P}, where P[e/v] is obtained from P by
replacing all occurrences of v in P with e.

The proof of the above proposition is beyond the scope of this book. Next, we present another property
of these annotations.

Proposition 2 If P1 ⇒ P2 and Q2 ⇒ Q1 and {P2} c {Q2} then {P1} c {Q1}.
Proof Assume that P1 ⇒ P2 and Q2 ⇒ Q1 and {P2} c {Q2}. To prove that {P1} c {Q1} we have to show
that

if P1 holds immediately before the execution of c and the execution of c terminates, then Q1

holds immediately after executing c.

March 26, 2015 37

Assume that P1 holds immediately before the execution of c and the execution of c terminates. Since
P1 ⇒ P2, we know that P2 holds immediately before the execution of c and the execution of c terminates.
Since {P2} c {Q2}, we can conclude that Q2 holds immediately after executing c. Since Q2 ⇒ Q1, we can
conclude that Q1 holds immediately after executing c. �

Since we have that i == 0 && pow == basei && exponent >= 0 implies
pow == basei && exponent >= i, we can conclude from the above proposition that

1 //@ assert i == 0 && exponent >= 0
2 pow = 1;

3 //@ assert pow == basei && exponent >= i

From Proposition 1, we can conclude that

1 //@ assert pow == basei

2 pow = pow * base;

3 //@ assert pow == basei + 1

because by replacing all occurrences of pow in pow == basei + 1 && i <= exponent with pow

* basewe obtain pow * base == basei + 1 && i <= exponent, which is equivalent to pow
== basei && i <= exponent.

Since pow = pow * base does not change the value of i, we also have

1 //@ assert pow == basei && i < exponent
2 pow = pow * base;

3 //@ assert pow == basei + 1 && i < exponent

From Propositionn 1, we can conclude that

1 //@ assert pow == basei + 1 && exponent > 1
2 i = i + 1;

3 //@ assert pow == basei && exponent >= i

To reason about loops, we use the following proposition.

Proposition 3 If {P && b} c {P} then {P} while(b){c} {P && !b}.

Proof Assume that {P &&b} c {P}. To prove that {P} while(b){c} {P &&!b} we have to show that

ifP holds immediately before the execution of while(b){c} and the execution of while(b){c}
terminates, then P && !b holds immediately after executing the loop.

Assume that P holds immediately before the execution loop and that the execution of the loop terminates.

First, we will show that P holds after n iterations of the loop. We show this by induction on n. We start
with the base case, which is n = 0. Since P holds before the loop, it holds after 0 iterations of the loop.
This concludes the proof of the base case. It remains to prove the inductive case. Let n > 0. Assume that P
holds after n − 1 iterations of the loop. (This is the induction hypothesis.) Since P holds at the end of the

38 Franck van Breugel and Hamzeh Roumani

n− 1-th iteration of the loop, if we reach the body of the loop in the n-th iteration, then P && b must hold
at that point. Since {P && b} c {P} and the loop terminates, we also know that c terminates and therefore
P holds at the end of the n-th iteration of the loop. This concludes the proof of the inductive case.

Since the loop terminates, we know it iterates N times for some N ≥ 0. As we have shown above, P holds
after N iterations of the loop. Because the loop terminates, we know that b does not hold at that point and,
hence, !b holds. Therefore P && !b holds when the loop terminates. �

Recall that Java also has for- and do-loops. However, since each such loop can be expressed in terms of
a while-loop, the above proposition is sufficient to reason about all loops.

The Boolean expression P in the above proposition is a loop invariant. Let us apply Proposition 3 to the
following loop.

1 while (i < exponent)
2 {
3 pow = pow * base;
4 i = i + 1
5 }

As we have already shown above, the body of the loop can be annotated as follows.

1 while (i < exponent)
2 {

3 //@ assert pow == basei && exponent > i
4 pow = pow * base;

5 //@ assert pow == basei + 1 && exponent > i
6 i = i + 1

7 //@ assert pow == basei && exponent >= i
8 }

Note that the body of the loop maintains the loop invariant pow == basei && exponent >= i.
Hence, from Proposition 3 we can conclude that

1 //@ assert pow == basei && exponent >= i
2 while (i < exponent)
3 {

4 //@ assert pow == basei && exponent > i
5 pow = pow * base;

6 //@ assert pow == basei + 1 && exponent > i
7 i = i + 1

8 //@ assert pow == basei && exponent >= i
9 }

10 //@ assert pow == baseexponent

Combining the above, we arrive at the following annotated code.

1 //@ assert exponent >= 0

March 26, 2015 39

2 i = 0;
3 //@ assert i == 0 && exponent > 0
4 pow = 1;

5 //@ assert pow == basei && exponent >= i
6 while (i < exponent)
7 {

8 //@ assert pow == basei && exponent > i
9 pow = pow * base;

10 //@ assert pow == basei + 1 && exponent > i
11 i = i + 1

12 //@ assert pow == basei && exponent >= i
13 }
14 //@ assert pow == baseexponent

From the above annotations we can conclude the following. Given that the precondition8 exponent >=
0 holds, if the above code terminates, then at that point the variable pow contains baseexponent.

8Recall that it is the client’s responsibility to ensure that the precondition holds and, therefore, the implementer may assume
that the precondition holds

40 Franck van Breugel and Hamzeh Roumani

Chapter 3

Implementing Non-Static Features

3.1 Introduction

3.1.1 Classes with only Non-Static Features

In the previous chapter, we concentrated on classes with only static features. These are known as utility
classes. In this chapter, we focus our attention on those classes all features of which are not static. In the
next chapter, we will discuss classes with both static and non-static features.

Since a class needs to be instantiated before it can be used, its client must begin by creating an instance
of it (that is, an object). As an example, consider the Rectangle class the API of which is shown here. The
following fragment shows how a client can use this class. The client starts by creating an empty rectangle
using the default constructor and then printing it. It then creates a non-empty rectangle and prints it. Finally,
it changes the width of the non-empty rectangle using a mutator and then prints the mutated object.

1 Rectangle empty = new Rectangle();
2 output.println(empty);
3

4 int width = 0;
5 int height = 1;
6 Rectangle rectangle = new Rectangle(width, height);
7 output.println(rectangle);
8

9 width = 2;
10 rectangle.setWidth(width);
11 output.println(rectangle);

The full example can be found at this link.

3.1.2 UML and Memory Diagrams

We saw in Section 2.1.3 that UML class diagrams can be used to represent utility classes. These same
diagrams can also be used to represent other classes by simply dropping the 〈〈utility〉〉 stereotype. For

41

http://www.cse.yorku.ca/~buildIt/api//2/Rectangle.api/Rectangle.html
http://www.cse.yorku.ca/~buildIt/code//2/RectangleIntro.java.txt

42 Franck van Breugel and Hamzeh Roumani

example, a UML class diagram for the Rectangle class of the previous section is shown below. Note that
the attribute box is empty and that the return of void methods is left blank.

Rectangle

+ equals(Object) : boolean
+ getHeight() : int
+ getWidth() : int
+ setHeight(int)
+ setWidth(int)
+ toString() : String

The memory diagrams introduced in Section 2.1.3 can also be used for other classes with one notable
addition: the implicit parameter in invocation blocks. As an example, consider the code fragment of the
previous section which creates two instances of the Rectangle class and mutates one of them. When
the invocation of the setWidth method on line 10 is executed, memory can be depicted as shown in the
following diagram.

...
100 Client.main invocation

300 empty
2 width
1 height
500 rectangle

200 Rectangle class

300 Rectangle object

500 Rectangle object

600 setWidth invocation
500 this
2 width

...

The diagram shows an invocation block for the main method of the Client class, a class block for the
Rectangle class, two object blocks for the two created Rectangle objects, and an invocation block
for the setWidth method. Recall that, in the client’s concern, an invocation block contains one entry for
each argument passed to the method. For the implementer, this is true only if the invoked method is static.
For non-static methods, however, the block contains an additional entry for the so-called implicit parameter.

March 26, 2015 43

This parameter is automatically added by the compiler so even a method such as getWidth, which does
not have any parameter, will end up having one parameter. The name of the added parameter is this and
its value is the value of the object reference on which the method is invoked.

With the implicit parameter in the invocation block we can see how a method invocation knows on which
object it should operate. For example, when the setWidth method receives control, it will find 500 as the
value of the parameter this and 2 as value of the parameter width. Hence, all it needs to do is set the
width of the Rectangle object on address 500 to the value 2. We will revisit the implicit parameter at
more depth throughout this chapter.

3.1.3 Check your Understanding

Consider the following fragment of client code.

1 String word = new String("computing");
2 String pattern = new String("̂ c[a-z]+");
3 boolean matched = word.matches(pattern);
4 output.println(matched);

Draw a memory diagram that depicts a snapshot of memory when the statement in line 3 is executing, that
is, just before the matches method returns.

3.2 How: The Class Definition

3.2.1 Class Structure

Implementing a class means writing its so-called class definition. Its general structure is identical to that of
a utility class, namely

1 // any needed package statement
2 // any needed import statements
3

4 public class SomeName
5 {
6 // the attribute section
7

8 // the constructor section
9

10 // the method section
11 }

The class definition has three sections, one for attributes, one for constructors, and one for methods. These
three sections may appear in any order but, as a matter of style, we will adhere to the above order.

If a class implements one or more interface then its header must declare this fact by using the key-
word implements followed by a comma-separated list of implemented interfaces. For example, if class
Rectangle implements the interfaces Comparable and Serializable then its header becomes

44 Franck van Breugel and Hamzeh Roumani

1 public class Rectangle implements Comparable, Serializable

This information also appears in the API. A client can deduce from this information that the class Rectangle
contains all the methods specified in the interfaces Comparable and Serializable. As we will see
later in this chapter, an implementer has to ensure that the class Rectangle implements all the methods
specified in the interfaces Comparable and Serializable. The latter fact is checked by the compiler.

3.2.2 Declaring and not Initializing Attributes

As an implementer of a class, our first task is to determine the attributes that are needed to meet the spec-
ification stated in the API of the class. This task is non-trivial because a typical API does not specify its
attributes directly. We therefore need to read the API carefully, especially its constructor section, in order
to understand what the class encapsulates and then infer the needed attributes. It should be noted that the
final outcome of this task is not unique: different implementers may come up with a different attributes (in
number or in type) and all these implementations are “correct” because their differences are not visible to
the client.

Once the attributes are determined, we define them in the attribute section of the class. The definition
has the following general form:

access type name;

or

access final type name;

Next, we discuss the different elements in some detail.

• access (also known as the access modifier) can be either public, which means this is a field, or
private, which means it is invisible to the client.1 It is a key software engineering guideline to
keep all non-final attributes private. First of all, it forces the client to use a mutator and, hence,
prevents the client from assigning wrong values to them, for example, assigning a negative value to
a field intended to hold the age of a person. Secondly, private attributes do not show up in the API
and, hence, declaring attributes private (rather than public) simplifies the API. Finally, since private
attributes do not show up in the API, their type and name can be changed by the implementer without
introducing any changes to the API.

• final is used if this attribute is a constant. Note that since these attributes are not static, the word
“constant” means it is constant per object, not per class; that is, the value of the attribute cannot be
changed, but it does not have to be the same for all objects of the class.

• type specifies the type of this attribute. It can be primitive or non-primitive.

As an example, we consider the Rectangle class introduced in the previous section. We see from its
API that it encapsulates a rectangle. We also note that the API lists constructors, accessors, and mutators
that refer to the width and height of the rectangle using the int type. Hence, it is reasonable to capture the

1The access modifier in Java can also be protected, which makes the attribute visible only to subclasses of this class, or can
be left blank, which makes the attribute visible only to classes in the same package as this class.

March 26, 2015 45

state of such a rectangle using a pair of int attributes (other possibilities exist and we will examine this
further later in this chapter). Based on this, we start the class definition of Rectangle as follows:

1 public class Rectangle
2 {
3 private int width;
4 private int height;
5 ...
6 }

When we define attributes or refer to them, we have to keep the following points in mind:

• We should not initialize attributes as we declare them. The initialization of attributes is done on an
object-by-object basis by the constructor. Contrast this with the opposite rule that we saw in the
previous chapter for static attributes. Spend some time to think through this difference: why are static
attributes initialized with their declaration whereas non-static ones are not?

• It is unfortunate that the Java compiler takes a cavalier attitude toward attribute initialization: it does
not object if we initialize a non-static attribute as we declare it, and it will assign a default value
for each attribute we leave without initialization! This behaviour makes code harder to understand,
increases the exposure to assumption risks (see Section 2.2.2), and encourages habits that may not be
supported in other languages. In this book, we will always initialize static attributes as we declare
them and leave the initialization of non-static ones to the constructor section.

• The scope of an attribute is the entire class.

• Recall that we refer to static attributes using the C.a syntax, where C is the name of the class to
which the attribute belongs and a is the name of the attribute. A similar syntax is used for non-static
attributes. We use the object reference in place of the class name. We already saw in Section 3.1.2
that the keyword this is used to refer to the object on which the method is invoked. Hence, we write
this.a whenever we want to refer to the attribute a of the object on which the method is invoked.

• It is unfortunate that the Java compiler takes a casual approach toward attribute reference: it does not
object if we refer to attributes by their name without the this. prefix (that is, as if they were local
variables). This may lead to confusion, especially when an attribute and a local variable or parameter
have the same name, and makes the code harder to understand and maintain. In this book, whenever
we refer to an attribute from within its class definition, we will always use the dot operator preceded
by the class name for static attributes and the dot operator preceded by this for non-static ones.

3.2.3 The Constructor Section

The constructor of a class is invoked whenever the class is instantiated (that is, whenever the new operator
is used) and its job is to initialize the state (that is, the attributes) of the created object. In order to provide
versatility and convenience to the client of the class, several constructors may appear in the API of the class
and their definitions comprise the constructor section of the class definition.

The definition of a constructor starts with a header with the following general form:

access signature

46 Franck van Breugel and Hamzeh Roumani

The access modifier can be either private or public.2 The signature consists of the name of the con-
structor, which has to be the same as the name of the class, followed by the parameter list. If the constructor
is public, we can copy and paste the header as-is from the API of the class.

As an example, the default constructor of our Rectangle class is implemented as follows.

1 public Rectangle()
2 {
3 this.width = 0;
4 this.height = 0;
5 }

Note how this is used to refer to the object the attributes of which are being initialized.
Similarly, we implement the two-parameter constructor of the Rectangle class as follows.

1 public Rectangle(int width, int height)
2 {
3 this.width = width;
4 this.height = height;
5 }

Note that within the body of the constructor, width refers to the parameter of the constructor, whereas
this.width refers to the attribute of the object under construction.

Consider the following fragment of client code.

1 int width = 1;
2 int height = 2;
3 Rectangle rectangle;
4 rectangle = new Rectangle(width, height);

After the execution has reached the end of line 3, memory can be depicted as follows.

...
100 Client.main invocation

1 width
2 height

rectangle

200 Rectangle class
...

The execution of line 4 can be split into three parts:

• the allocation of a block of memory for a Rectangle object,

2The access modifier in Java can also be protected, which makes the constructor visible only to subclasses of this class, or
can be left blank, which makes the constructor visible only to classes in the same package as this class.

March 26, 2015 47

• the execution of the two-parameter constructor of the Rectangle class to initialize the Rectangle
object, and

• the assignment of the value of the created Rectangle object, that is, its memory location, to the
variable rectangle.

In the first part, a block of memory is allocated for the new Rectangle object. This can be reflected in
our memory diagram by adding the following.

...
300 Rectangle object

width
height

...

In the second part, the two-parameter constructor is invoked. This invocation gives rise to an invocation
block. This invocation block not only contains the parameters width and height and their values, but
also the implicit parameter this and its value. Recall that the value of this is the reference to the object
on which the constructor is invoked. In this case, it is 300.

...
400 Rectangle invocation

300 this
1 width
2 height

...

As a result of the execution of the constructor, the state of the Rectangle object is initialized. For example,
execution of the assignment

1 this.width = width;

amounts to assigning the value of the parameter width, which is 1 according to the invocation block, to
the attribute width of the object referred to by this, which is the object at address 300 according to the
invocation block. After the constructor returns, the above invocation block is deleted from memory and the
block of the Rectangle object now has the following content.

...
300 Rectangle object

1 width
2 height

...

In the third and final part, the local variable rectangle is assigned its value. As a consequence, the
invocation block of the main method can now be depicted as follows.

48 Franck van Breugel and Hamzeh Roumani

...
100 Client.main invocation

1 width
2 height
300 rectangle

...

Finally, we implement the one-parameter constructor shown in the API. This so-called copy constructor3

enables the client to create a copy of a Rectangle object by simply passing that object as an argument,
rather than passing the width and height individually as arguments.

1 public Rectangle(Rectangle rectangle)
2 {
3 this.width = rectangle.width;
4 this.height = rectangle.height;
5 }

Note how this constructor initializes the state of this rectangle instance using the state of the passed
rectangle. Note also that we can access the attributes of the passed instance even though they are
private. This is because privacy is a class issue, not an object issue, that is, there is no privacy across objects
belonging to the same class. Note also that we could have used the public accessors of the passed instance
instead of using the attributes directly, that is

1 public Rectangle(Rectangle rectangle)
2 {
3 this.width = rectangle.getWidth();
4 this.height = rectangle.getHeight();
5 }

The two approaches are similar but, as we will see later in this chapter, the second one leads to code that is
scalable and easier to understand and maintain.

If we define a class and we do not include any constructor (neither public nor private), then a default
constructor, that is, one that takes no arguments, is added by the compiler. This constructor is only added
if the class does not contain any constructor at all. In this constructor, the attributes are initialized to the
default values.

3.2.4 Defining Methods

The method section of the class definition contains one definition per method. The method header has the
following general form:

access type signature

3In Java, objects can also be copied using the clone method. Since most other object oriented programming languages also
support copy constructors, but mostly do not provide a clone method, we will restrict our attention to copy constructors in this
book.

March 26, 2015 49

As in the case of attributes, the access modifier can be either public or private.4 Recall that the type
is either void or the actual type of the return. Recall also that the method’s signature consists of its name
followed by its parameter list.

Which methods appear in the method section of a class definition depends of course on the class and
its functionality. Nevertheless, there are common themes such as state-related methods (accessors and
mutators), obligatory methods that override those of the Object class (such as toString, equals,
and hashcode), interface-related methods (such as compareTo), and class-specific methods (such as
getArea and scale). Let us take a look at some of these general themes and examine the implementa-
tion of each in the Rectangle class.

Accessors

An accessor enables the client of the class to gain access to the value of one of the (otherwise invisible)
attributes of an object of the class. For example, the getWidth accessor in Rectangle returns the value
of the width of the rectangle on which the method is invoked. Hence, it is implemented as follows.

1 public int getWidth()
2 {
3 return this.width;
4 }

It is common to name the accessor of attribute x as getX() unless the type of x is boolean. If the type
of x is boolean, then the name isX() is generally used for the accessor of x.

Mutators

A mutator enables the client to modify, or mutate, the value of one of the attributes of an object of the class.
For example, the setWidth mutator in Rectangle changes the width of the rectangle on which it is
invoked to the passed value. Hence, it is implemented as follows.

1 public void setWidth(int width)
2 {
3 this.width = width;
4 }

It is common to use the name setX for the mutator of the attribute x. The mutator receives the new value
for x as an argument.

Based on the requirements, the API designer determines if an attribute should have only an accessor
(read-only), only a mutator (write-only), both an accessor and a mutator (read-write), or neither.

The toString Method

It is highly recommended that each class overrides the toString method of the Object class, because
its return (a class name and an address) is usually not useful. In a typical API design, the method should

4The access modifier in Java can also be protected, which makes the method visible only to subclasses of this class, or can
be left blank, which makes the method visible only to classes in the same package as this class.

50 Franck van Breugel and Hamzeh Roumani

return a textual representation of the object on which it is invoked, for example its name or elements of its
state. For example, the toString method in Rectangle class returns a string that identifies the object
as an instance of the Rectangle class and provides its width and height:

Rectangle of width 1 and height 2

The method can be implemented as follows.

1 public String toString()
2 {
3 return "Rectangle of width " + this.width + " and height " + this.height;
4 }

The equals Method

It is also highly recommended that each class overrides the equals method of the Object class, because
its return is based on the equality of memory addresses (that is, two objects are equal if and only if they have
the same memory address). Typically, the equals method should compare the states of the objects, rather
than their memory addresses. For example, two rectangles are considered equal if they have the same height
and the same width. Whatever the definition of equality is, the equals method must satisfy the following
properties:

• reflexive: x.equals(x) returns true for any x different from null,

• symmetric: x.equals(y) returns true if and only if y.equals(x) returns true for all x and y
different from null,

• transitive: if x.equals(y) returns true and y.equals(z) returns true then x.equals(z)
returns true for all x, y and z different from null,

• x.equals(null) returns false for all x different from null.

One of the peculiarities of the equals method is that its parameter is of type Object. Consider,
for example, our class Rectangle. If the parameter of the equals method were of type Rectangle,
then this equals method would not override the equals method of the Object class (in that case, the
Rectangle class would have two equals methods).

Since the parameter of the equals method is of type Object, we must first ensure that the passed
argument is of the same type as the class being implemented. This can be done in two ways: either using
the getClass method or exploiting instanceof. We will always take the former approach. Later in
this book, we will discuss why using the getClass method is better than exploiting instanceof.

An object of the class Class, which is part of the package java.lang, represents a class. For each
class, there is a unique object of the class Class that represents it. For example, there exists a unique
Class object that represents the Rectangle class. Given a Rectangle object named rectangle,
we can get the Class object that represents the Rectangle class by rectangle.getClass(). Since
each class is represented by a unique Class object, we can use x.getClass() == y.getClass()
to test if x and y are instances of the same class.

March 26, 2015 51

If the passed object is of the same type as the object on which the equals method is invoked, then we
can compare the states of the object. For example, for the Rectangle class the equals method can be
implemented as follows.

1 public boolean equals(Object object)
2 {
3 boolean equal;
4 if (object != null && this.getClass() == object.getClass())
5 {
6 Rectangle other = (Rectangle) object;
7 equal = (this.width == other.width) && (this.height == other.height);
8 }
9 else

10 {
11 equal = false;
12 }
13 return equal;
14 }

Note that we first had to ensure that the parameter is not null. Otherwise, the invocation other.getClass()
may give rise to a NullPointerException.

One may wonder why we cast object to a Rectangle in line 6, since we already checked in line 4
that object is a Rectangle. Since object is declared to be of type Object and the class Object
does not contain the attributes width and height, the compiler would report errors such as

Rectangle.java: cannot find symbol
symbol : variable width
location: class java.lang.Object

equal = (this.width == object.width) && ...

if object were not cast to a Rectangle (more precisely, if we were to remove line 6 and replace other
with object in line 7).

Note also the role played by the equal local variable: one could implement equals without it but
this would lead to multiple return statements in the method, which may make the code harder to maintain.
In this book, all non-void methods will have a single return statement at the very end of their body.

We leave it to the reader to check that our equals method of the Rectangle class satisfies the four
properties mentioned above.

The compareTo Method

The API designer may want to impose an order relation on the objects of a class so that, for example, a list
of them can be sorted. To indicate that objects of the class C have such a natural order, the class C is made
to implement the Comparable<C> interface. This interface has a single method which takes an instance
of class C as its argument and returns in integer. It returns a negative, zero, or positive integer depending on
whether the instance on which it is invoked is smaller, equal, or greater than the passed instance. The exact
definition of “smaller” and “greater” depends on the class but it must obey the following conditions:

52 Franck van Breugel and Hamzeh Roumani

• x.compareTo(y) returns 0 if and only if y.compareTo(x) returns 0,

• x.compareTo(y) returns a value smaller than 0 if and only if y.compareTo(x) returns a value
greater than 0,

• x.compareTo(y) throws an exception if and only if y.compareTo(x) throws an exception,

• if x.compareTo(y) returns a value smaller than 0 and y.compareTo(z) returns a value smaller
than 0 then x.compareTo(z) returns a value smaller than 0, and

• if x.compareTo(y) returns 0 and y.compareTo(z) returns 0 then x.compareTo(z) returns
0.

Furthermore, the definition in almost all APIs ensures that x.compareTo(y) returns 0 if and only if
x.equals(y) returns true.

The API of the compareTo method in Rectangle defines a rectangle as being smaller than another
rectangle if its width is smaller than the width of the other rectangle, or they share the same width but the
height of the first rectangle is smaller than the height of the other rectangle. Based on this, the method can
be implemented as follows.

1 public int compareTo(Rectangle rectangle)
2 {
3 int difference;
4 if (this.width != rectangle.width)
5 {
6 difference = this.width - rectangle.width;
7 }
8 else
9 {

10 difference = this.height - rectangle.height;
11 }
12 return difference;
13 }

Since the interface Comparable is generic, the compareTo method does not share the peculiarity of the
equals method in that its parameter is not of type Object, but of the same type as its class. This is why
its implementation is simpler as it neither has to use the getClass method nor has to cast. Note also that
the implementation does not have to validate the incoming parameter for null even though the body will
throw a NullPointerException in that case. This is because the API of the Comparable class states
that a NullPointerException must be thrown if the argument is null (see the third property above).

Besides implementing the compareTomethod, we also add implements Comparable<Rectangle>
to the header of the class.

Class-Specific Methods

The methods getArea and scale in the Rectangle class are examples of class-specific methods.

March 26, 2015 53

The getArea method returns the area of the rectangle on which it is invoked and can be implemented
as follows.

1 public int getArea()
2 {
3 return this.width * this.height;
4 }

The scale method takes a scale factor, which is a non-negative integer according to its precondition,
and scales the width and height of the rectangle on which it is invoked by that factor. This method can be
implemented as follows.

1 public void scale(int factor)
2 {
3 this.width = this.width * factor;
4 this.height = this.height * factor;
5 }

The complete class can be found by following this link.

3.2.5 Documenting a Class

As we have seen in the previous chapter, classes have two types of documentation: internal (intended for
implementers) to explain how the class works, and external (intended for clients) to explain what the class
does. Both types are embedded in the class definition (rather than kept in separate files) to ensure that code
and documentation remain in sync.

The javadoc tool is used to extract external documentation and format it as HTML. The tags that we
studied for utility classes, including @param, @pre., @return, and @throws, apply as before.

As an example, consider the width mutator of our Rectangle class. Its documentation can be done as
shown below.

1 /**
2 Sets the width of this rectangle to the given width.
3

4 @param width The new width of this rectangle.
5 @pre. width >= 0
6 */
7 public void setWidth(int width)

As we can see, generating an API for a class with non-static features follows the exact same rules as
those for a utility class. This should not be surprising because the main difference between these two types
of classes is state, and state, being private, does not show up in any external documentation.

The completely documented class can be found by following this link.

3.2.6 Testing a Class

There are two main differences between testing a class with only non-static features and testing a class
with only static features. First of all, we also need to check that the constructors behave according to their

http://www.cse.yorku.ca/~buildIt/code//2/Rectangle.java.txt
http://www.cse.yorku.ca/~buildIt/code//2/Rectangle.java.txt

54 Franck van Breugel and Hamzeh Roumani

specifications. Secondly, for each non-static method, each test case not only consists of values for the
parameters but also a value for the implicit parameter this.

Since the class may have several constructors, our test app needs to be conducted using each of them
separately. As an example, let us write a tester for the two-parameter constructor and the accessors of the
Rectangle class. According to its precondition, the two-parameter constructor only accepts widths and
heights that are greater than or equal to 0. Hence, we randomly generate two integers between 0 and, say,
100.

1 Random random = new Random();
2 final int MAX = 100;
3 int width = random.nextInt(MAX + 1);
4 int height = random.nextInt(MAX + 1);

Our test vector for the two-parameter constructor will consist of several, say 100, of such (width,
height) pairs. Next, we invoke the two-parameter constructor for each test case.

1 Rectangle rectangle = new Rectangle(width, height);

Finally, we combine the test case (width, height) with the created Rectangle object rectangle
into a triple (width, height, rectangle). This will be a test case for the accessors. Note that it
also includes a value for the implicit parameter this. We choose direct verification as our oracle.

1 if (rectangle.getWidth() != width)
2 {
3 output.print("Either the two-parameter constructor or the method getWidth

failed the test case: ");
4 output.printf("width = %d, height = %d%n", width, height);
5 }
6 if (rectangle.getHeight() != height)
7 {
8 output.print("Either the two-parameter constructor or the method getHeight

failed the test case: ");
9 output.printf("width = %d, height = %d%n", width, height);

10 }

The full tester can be found by following this link. A tester using Junit can be found here.

3.3 Beyond the Basics

3.3.1 Avoiding Code Duplication

Generally, we try to avoid code duplication. Code containing duplicated fragments is usually more difficult
to maintain. Here, we focus on those fragments of code that involve the attributes. These fragments may
need to be changed when we decide to represent the state of an object in a different way. For example,
rather than using a pair of integers we may decide to represent the state of a rectangle by means of a
string consisting of the width and the height separated by a space. Having no duplicated code will usually

http://www.cse.yorku.ca/~buildIt/code//2/RectangleTester.java.txt
http://www.cse.yorku.ca/~buildIt/code//2/RectangleTester.java.txt

March 26, 2015 55

minimize the number of changes to the code. For those fragments involving attributes we present three
different techniques to avoid code duplication.

Constructor Chaining

Consider, for example, the work done by the default constructor of the Rectangle class.

1 public Rectangle()
2 {
3 this.width = 0;
4 this.height = 0;
5 }

We see that it initializes the attributes width and height to 0. This code is very similar to the two-
parameter constructor which also initializes the attributes width and height.

1 public Rectangle(int width, int height)
2 {
3 this.width = width;
4 this.height = height;
5 }

The default constructor can be seen as a special case of the two-parameter constructor. We can avoid
some code duplication by rewriting the default constructor so that it merely delegates to the two-parameter
constructor. As we have seen in Section 3.2.3, we store three pieces of information in the invocation block:
the values of the parameters width (0 in this case) and height(0 in this case) and the value of the implicit
parameter this. These three ingredients can be combined as follows.

1 public Rectangle()
2 {
3 this(0, 0);
4 }

Consider the following fragment of client code.

1 Rectangle empty = new Rectangle();

Assume that the block for the new Rectangle object is allocated at address 200. Then the invocation of
the constructor gives rise to the following block in memory.

...
400 Rectangle invocation

200 this
...

The execution of the body of the default constructor gives rise to the invocation of the two-parameter con-
structor, which is reflected by the following block in memory.

56 Franck van Breugel and Hamzeh Roumani

...
600 Rectangle invocation

200 this
0 width
0 height

...

Subsequently, the execution of the body of the two-parameter constructor results in the attributes width
and height of the Rectangle object at address 200 being set to zero.

Having one constructor delegating to another is known as constructor chaining. Similarly, we see that
our implementation of the copy constructor duplicates some code. Again we can exploit constructor chaining
to remove this redundancy.

1 public Rectangle(Rectangle rectangle)
2 {
3 this(rectangle.width, rectangle.height);
4 }

Hence, our first technique employs the this(...) construct to make all constructors delegate to one.
The Java compiler requires that the this(...) statement be the very first in the body of a constructor.

Delegating to Mutators

Initially, we implemented the two-parameter constructor as follows.

1 public Rectangle(int width, int height)
2 {
3 this.width = width;
4 this.height = height;
5 }

Note that the above constructor duplicates the code of the mutators. Hence, we can rewrite this constructor
as follows.

1 public Rectangle(int width, int height)
2 {
3 this.setWidth(width);
4 this.setHeight(height);
5 }

After having applied these two techniques, none of the constructors directly access the attributes and,
hence, none is vulnerable to changes of the representation of those attributes. For example, if we decide to
change the representation of the attributes from a pair of integers to a string of two integers separated by a
space, then none of the constructors need to be refactored.

Delegating to Accessors

Our third technique ensures that attributes are only directly read in the accessors. For example, we imple-
mented the getArea method of the Rectangle class as follows.

March 26, 2015 57

1 public int getArea()
2 {
3 return this.width * this.height;
4 }

Direct references to the attributes make this method vulnerable to changes of the representation of the
attributes. We can therefore employ our third technique and rewrite the method as follows.

1 public int getArea()
2 {
3 return this.getWidth() * this.getHeight();
4 }

We can also apply this technique to the copy constructor. This results in the following constructor.

1 public Rectangle(Rectangle rectangle)
2 {
3 this(rectangle.getWidth(), rectangle.getHeight());
4 }

The refactored class can be found by following this link.

3.3.2 Immutable Objects

Consider the following snippet of client code.

1 String s = "yo";
2 s = s + s;
3 String t = "yoyo";

When the execution reaches the end of line 1, memory can be depicted as follows.

...
100 Client.main invocation

300 s
t

200 String class

300 String object
”yo” value

...

The state of the String object at address 300 reflects that this object represents the string literal "yo".
Somewhere in memory the characters ’y’ and ’o’ are stored. To simplify matters a little, we will assume
that these characters are stored in the object. Recall that the class String is immutable. This means that

http://www.cse.yorku.ca/~buildIt/code//2/RefactoredRectangle.java.txt

58 Franck van Breugel and Hamzeh Roumani

the state of a String object cannot be changed. As a consequence, the statement s = s + s in line 2
results in the creation of a new String object the state of which contains the characters ’y’, ’o’, ’y’ and
’o’. Once the execution reaches the end of line 2, memory can depicted as follows.

...
100 Client.main invocation

500 s
t

200 String class

300 String object
”yo” value

500 String object
”yoyo” value

...

Note that the String object at address 300 has become garbage.
Since String objects are immutable, there is no need to create a new String object for the variable

t in line 3 of the above code snippet. Once the execution reaches the end of line 3, our memory diagram
looks as follows.

...
100 Client.main invocation

500 s
500 t

200 String class

500 String object
”yoyo” value

...

Note that the String object that used to be at address 300 has been garbage collected.
API designers may demand immutability either because of the nature of the class or, as is the case for

the String class, for efficiency reasons. Regardless, we need to be able to implement such immutable
classes.

As an example, assume that our Rectangle class is supposed to be immutable. At first glance, we may
be tempted to simply delete all its mutators. However, this may break other parts of the implementation, in
particular those parts that rely on (that is, delegate to) these mutators. In fact, recall that in Section 3.3.1 we
avoided code duplication by delegating to mutators. Hence, rather than deleting all mutators we can simply
make them private. For example, the width mutator remains as before except for its access modifier:

March 26, 2015 59

1 private void setWidth(int width)
2 {
3 this.width = width;
4 }

3.3.3 Attribute Caching

When we make design choices while we are identifying the attributes of our class, we often opt for a minimal
set of attributes that capture the state of an instance. For example, the state of a Rectangle object involves
a width and a height and this suggests using two integers as attributes. The API of Rectangle does
have a method named getArea. However, adding an attribute named area, which holds the area of the
rectangle, would lead to redundant information. This information can easily be computed from the width
and the height, as we do in the getArea method. There is no need to treat it as part of the state, that is, it
needs not be computed and stored for every instance.

Generally, we try to keep the attributes independent (and thus minimal) because this is consistent with
the general principle of avoiding redundancy. There are situations, however, in which a redundant attribute
is kept because recomputing it requires extensive resources. This process is known as caching the attribute
value, and the attribute itself is known as a cache. As an example, let us add the following (admittedly
artificial) method to the API of our Rectangle class:

public int getGreatestCommonDivisor()

This method returns the greatest common divisor of the width and the height of a rectangle. Rather than com-
puting the greatest common divisor of the width and height everytime the method getGreatestCommon-
Divisor is invoked, we cache it. That is, we introduce an attribute, say greatestCommonDivisor.

1 private int greatestCommonDivisor;

The method getGreatestCommonDivisor simply returns the value of this attribute.

1 public int getGreatestCommonDivisor()
2 {
3 return this.greatestCommonDivisor;
4 }

Whenever the state of a rectangle changes, the value of the attribute getGreatestCommonDivisor
needs to be recomputed. Hence, this should be done in both mutators. To avoid code duplication, we
introduce a private method.

1 private void setGreatestCommonDivisor()
2 {
3 // assign to this.greatestCommonDivisor the greatest common divisor
4 // of this.width and this.height
5 }

This method is invoked in both mutators. For example, the mutator for the attribute width is modified
resulting in the following.

60 Franck van Breugel and Hamzeh Roumani

1 public void setWidth(int width)
2 {
3 this.width = width;
4 this.setGreatestCommonDivisor();
5 }

Note that this is an example of an attribute the accessor of which is public and the mutator of which is
private.

3.3.4 Class Invariants

We may want to document that a property about the state of each object of a particular class “always”
holds. For example, we may want to express that the width and the height of a Rectangle object are
greater than or equal to 0. Such a property can be documented as a class invariant. A class invariant is a
predicate involving the attributes of the class. For example, the class invariant that expresses the width and
the height of a Rectangle object to be greater than or equal to 0 can be documented as follows in the
class Rectangle.

1 //@ invariant this.width >= 0 && this.height >= 0

Note that the above is not a documentation comment and, hence, will not show up in the API.
A class invariant has to satisfy the following two constraints.

• The class invariant has to be true after each public constructor invocation, provided that the client
ensures that the precondition of the invoked constructor is met. That is, if the class invariant holds
when the constructor is invoked and the precondition of the constructor holds as well, then the class
invariant also holds when the constructor returns.5 Let us check this constraint for the above class
invariant. Obviously, the width and the height of a Rectangle object are greater than or equal to
0 when it is created by the default constructor. If we create a Rectangle object using the two-
parameter constructor, then the precondition of this constructor implies that the width and the height
are greater than or equal to 0. Finally, assume that we create a Rectangle object by means of
the copy constructor. From the class invariant we can infer that the width and the height of the
Rectangle object that is provided as an argument to the copy constructor are greater than or equal
to 0. Hence, also the width and the height of the created Rectangle object are greater than or equal
to 0.

• The class invariant has to be maintained by each public method invocation, provided that the client
ensures that the precondition of the invoked method is met. Again, let us check this constraint for the
above class invariant. Obviously, we only have to consider those public methods that change the at-
tributes width or height. Hence, we only have to consider the methods setWidth, setHeight
and scale. For the mutators, the preconditions imply that the new width and the new height are
greater than or equal to 0. Finally, let us consider the scale method. To check that this method
maintains the class invariant, assume that the class invariant holds, that is, the width and height are

5The class invariant does not need to hold continuously when the body of the constructor is executed.

March 26, 2015 61

greater than or equal to 0, and its precondition is met, that is, factor ≥ 0. Then, the new width and
the new height are of course also greater than or equal to 0.

While testing a class, we may want to check that the class invariant holds after each invocation of a
public constructor and is maintained by each invocation of a public method. There are tools that can check
that class invariants, like the one discussed above, hold for a class.

3.3.5 The hashCode Method

One of the obligatory methods that every class inherits (or overrides) from the Object class is the hashCode
method. It returns an integer that acts as an identifier for the object on which the method is invoked. A
hashCode method implements a hash function, which maps objects to integers, and the method is used in
classes such as HashSet and HashMap. Full treatment of hash functions is beyond the scope of this book.

In whatever way we map objects to integers, the hashCode method has to satisfy the following prop-
erty:

• if x.equals(y) returns true then x.hashCode() and y.hashCode() return the same integer
for all x and y different from null.

The opposite is not required, that is, if two objects are unequal according to the equals method, then the
hashCode method need not return distinct integers. However, we should be aware that returning distinct
integers for unequal objects may improve the performance of methods in classes such as HashSet and
HashMap.

For the wrapper class Integer, the hashCode method can be implemented as follows.

1 public int hashCode()
2 {
3 return this.value;
4 }

where the attribute value hold the int value of the Integer object. In this case, the hashCode maps
two objects to the same integer if and only if the objects are the same according to the equals method.
However, such a one-to-one correspondence is not always possible. For example, the wrapper class Double
has 264 different instances, but there are only 232 different integers.

Now let us return to our Rectangle class. Let us first choose not to implement it (that is, use the one
inherited from Object) and consider the following client fragment:

1 Set<Rectangle> set = new HashSet<Rectangle>();
2 set.add(new Rectangle());
3 set.add(new Rectangle());
4 output.println(set.size());

Since the two added rectangles are equal, one expects the set to have only one element because sets keep
only distinct elements. This fragment, however, leads to both elements being added to the set, that is, the
set will consist of elements that are deemed equal by the equals method! This example shows that it is
critical to override the hashCode method and ensure that its implementation satisfies the above mentioned

62 Franck van Breugel and Hamzeh Roumani

property.6 For our Rectangle class, we can implement the hashCode method as follows.

1 public int hashCode()
2 {
3 return this.getWidth() + this.getHeight();
4 }

This ensures that when invoked on two rectangles of equal width and height, the method returns the same
integer. Such an implementation meets the equality requirement and will indeed cause the above client frag-
ment to store one and only one element in the set. It does not, however, meet the one-to-one correspondence.
For example, the rectangle with width 2 and height 3 and the rectangle with width 4 and height 1 both return
the same hash code, namely 5, even though they are different rectangles. Also in this case, no one-to-one
correspondence is feasible since there are 262 different rectangles, but only 232 different integers.

3.3.6 Validation and the Implementer

As we have already seen in Section 2.4.2, the implementer can validate the input to a method in differ-
ent ways. Here, we revisit this topic for the mutator of the attribute width. In the original API of the
Rectangle class, the parameter width is restricted to a non-negative integer by means of a precondition.
Next, we present two alternative designs.

As in Section 2.4.2, instead of a precondition, we can use an exception. In this case, we throw an
IllegalArgumentException whenever the value of the parameter width is smaller than 0. This can
be implemented as follows.

1 public void setWidth(int width) throws IllegalArgumentException
2 {
3 if (width < 0)
4 {
5 throw new IllegalArgumentException("Argument of setWidth method cannot be

negative");
6 }
7 else
8 {
9 this.width = width;

10 }
11 }

This method can be documented as follows.

1 /**
2 Sets the width of this rectangle to the given width.
3

4 @param width The new width of this rectangle.
5 @throws IllegalArgumentException if width < 0.

6The hashCode method of the Object class satisfies the property with respect to the equals method of the Object class.
Since we did override the equals method in the Rectangle class, we also have to override the hashCode method.

March 26, 2015 63

6 */

The above documentation comment and the method header give rise to the following snippet of the API.

setWidth

public void setWidth(int width)
throws IllegalArgumentException

Sets the width of this rectangle to the given width.
Parameters:
width - The new width of this rectangle.
Throws:
IllegalArgumentException - if width < 0.

As an alternative, we may decide to set the attribute width to its new value only if that value is non-
negative. Whether the attribute is set to a new value is returned to the client in the form of a boolean. This
alternative design can be implemented as follows.

1 public boolean setWidth(int width)
2 {
3 boolean isSet = width >= 0;
4 if (isSet)
5 {
6 this.width = width;
7 }
8 return isSet;
9 }

This method can be documented as follows.

1 /**
2 Sets the width of this rectangle to the given width if
3 the given width is greater than or equal to 0. Returns
4 whether the width has been set.
5

6 @param width The new width of this rectangle.
7 @return true if width <= 0, false otherwise.
8 */

The above documentation comment and the method header give rise to the following snippet of the API.

64 Franck van Breugel and Hamzeh Roumani

setWidth

public boolean setWidth(int width)

Sets the width of this rectangle to the given width if the given width is greater than or equal to 0. Returns
whether the width has been set.
Parameters:
width - The new width of this rectangle.
Returns:
true if width <= 0, false otherwise.

3.3.7 Check your Understanding

Refactor the Rectangle class in the following ways.

• Instead of using a pair of integers to represent the state of a rectangle, use a string consisting of the
width and the height separated by a space. For example, a rectangle with width 1 and height 2 is
represented by a single attribute the value of which is "1 2".

• Instead of using a pair of ints to represent the state of a rectangle, use a long. For example, a
rectangle with width 1 and height 2 is represented by a single attribute the value of which is 1×232+2.

Chapter 4

Mixing Static and Non-Static Features

4.1 Introduction

In Chapter 2, we focused on static features. Non-static features were the topic of Chapter 3. In this chapter,
we mix the two.

In order to focus on the general ideas without being distracted by the details of a particular class, we
will illustrate most using a very simple class, the Rectangle class that we implemented in the previous
chapter.

4.2 Static versus Non-Static Features

In the previous two chapters, we focussed on static and non-static features. Before we combine the two, let
us first contrast them.

A static attribute contains data related to a class, whereas a non-static attribute contains data related to an
object. A static attribute is accessed using the class name, whereas a non-static attribute is accessed via an
object reference. For example, the static attribute PI of the class Math approximates the constant π. This at-
tribute can be accessed using Math.PI. The non-static attribute width of the class Rectangle contains
the width of a Rectangle object. The width of a Rectangle object be obtained using this.width.
Recall that this refers to an object.

A static method is invoked on a class, whereas a non-static method is invoked on an object reference. For
example, the static method abs of the class Math can used as Math.abs(-1). This invocation results in
the following invocation block.

...
244 Math.abs invocation

−1 a
...

The non-static method setWidth of the Rectangle can be used as rectangle.setWidth(2),
where rectangle refers to a Rectangle object. This invocation results in the following invocation
block.

65

66 Franck van Breugel and Hamzeh Roumani

...
156 Rectangle object

...
244 setWidth invocation

156 this
2 width

...

Recall that the implicit parameter this refers to the object on which the method is invoked.
As we have seen in the previous chapter, this can be used in the body of a constructor or method. It

refers to the object on which the constructor or method is invoked. Since static methods are invoked on a
class (rather than an object), this cannot be used in the body of a static method.

4.3 Interaction of Static and Non-Static Attributes

4.3.1 Incorporating an Invocation Counter

There are a variety of situations in which we may want to keep track of the number of times a particular
method in a class is invoked. Such an invocation count provides a measure of how “popular” a method is,
and may for example be used to determine if the efficiency of the method needs to be improved. The count
can also be used in settings in which a cost (in dollars, time, or system resources) is associated with using
the method and we need to profile the utilization of this cost.

As an example, suppose we were told to keep track of the number of times the getArea method of
the Rectangle class is used and to report this count via a new method named getCount. How can we
refactor the Rectangle class to incorporate this change? As an implementer, we first have to decide how
to represent this additional information. Introducing an attribute, named count, of type int is a natural
choice. If we expect an enormous number of invocations, we may choose an attribute of type long instead.
As always, it should be a private attribute.

Should we make the attribute static or non-static? If we make it non-static, then it will be associated
with objects of the class. Hence, we will have a separate counter for each object of the class. This counter
will record the number of invocations made on that particular object. If, however, we make it static, then it
will be associated with the class. Hence, there will be a single counter. This counter will keep track of the
number of invocations made on all objects of the class. In other words, the static count would be the sum of
all the non-static counts. What we are after is an overall count so we make the attribute static.

We add the following declaration to the attribute section.

1 private static int count = 0;

Since the attribute is static, in accordance with our attribute initialization guidelines, we initialize the at-
tribute together with its declaration, not in the constructor. This implies that no changes need to be made to
the constructor section.

We need to increment this counter whenever getArea is invoked so we add the following line to its
body.

March 26, 2015 67

1 Rectangle.count++;

Note how the attribute was referenced: since it is static we prefix it with the class name.
Finally, we add a new method that acts as an accessor for the new attribute.

1 public static int getCount()
2 {
3 return Rectangle.count;
4 }

Note that this method is static as it only involves static attributes.

4.3.2 Stamping a Serial Number on Objects

Assume that we want to associate a unique serial number with every object of a class. This mimics the
situation in many factories where each product has a serial number. This pattern can be thought of as made
up of two parts, one of which is similar to the invocation count that we discussed in the previous section,
and the other is new.

The similarity with the invocation count becomes clear if we consider counting the number of times a
constructor is called. In a multi-constructor class, it is common to have all constructors chained so they all
ultimately call one of them. If we apply the invocation count idea to that constructor, we will be able to
generate a serial number for each instance.

The second part of this pattern requires that we stamp the generated serial number on the object, that is,
we store it in the object, and this can be done by adding a non-static attribute to hold it.

We therefore conclude that implementing this pattern calls for two attributes, one static to generate
numbers serially and one non-static to hold the serial number per object.

Let us apply this pattern by requiring that every rectangle we create from our Rectangle class carries
a unique serial number that starts at 1 and increments serially. Based on the above discussion, this means
we need to add the following declarations to the attribute section.

1 private static int count = 0;
2 private int number;

For the attribute number, we introduce an accessor and mutator.
Next, we need to increment count. Recall that after re-factoring the Rectangle class to avoid code

duplication, we chained its three constructors so that two of them delegate to the two-parameter constructor
which, in turn, delegates to the mutators. It is in this two-parameter constructor where we should increment
the count.

Furthermore, since the attribute number was added to the state, it needs to be initialized and we do that
also in the two-parameter constructor. Hence, we add two lines to the body of this constructor, as follows.

1 public Rectangle(int width, int height)
2 {
3 this.setWidth(width);
4 this.setHeight(height);
5 Rectangle.count++;

68 Franck van Breugel and Hamzeh Roumani

6 this.setNumber(Rectangle.count);
7 }

The serial number is available to the client via the accessor. Note, however, that we probably do not
want to allow the client to change this number. This can be accomplished by making the mutator private.

4.4 Two Design Patterns

4.4.1 Maintaining a Singleton

Imagine having a large, multi-class application in which several classes require the services of one particular
class that represents a resource, for example, a database connection. If every class were allowed to instantiate
this resource class then we would end up with several instances of it and this could be wasteful (for example,
too many connections to the same database). What we need is the ability to ensure that only a single object of
a class can be created (per virtual machine) and to provide global access to this object. The lone instance in
this scenario is known as a singleton and in this section we discuss how to implement the so-called singleton
design pattern.

First of all, how do we prevent clients of our class from instantiating it more than once? Anytime a client
uses the new operator in conjunction with the class name, a new instance is created. Hence, it is clear from
the outset that the client should not be able to use new and this, in turn, implies that our class must not have
any public constructor. We therefore make all the class constructors private.

Now that we have prevented the client from instantiating our class, we need to find a way to deliver the
lone instance to the client, and we do that through the return of a method. The method has got to be static
or else the client cannot invoke it! Hence, this line of reasoning leads us to create a method with a header
similar to the following.

1 public static ClassName getInstance()

How do we store the single instance so that the method can return it? We need to have an attribute that stores
this instance. This single instance is associated with the class. This implies the attribute must be static.

1 private static ClassName instance = new ClassName(...);

Note that, as always for static attributes, we combine the declaration and the initialization. To initialize the
instance, we invoke one of the private constructors. In the body of the getInstance method, we simply
return the attribute as follows.

1 public static ClassName getInstance()
2 {
3 return ClassName.instance;
4 }

Let us apply this by requiring that our Rectangle class be a singleton. We start with making all
constructors of the Rectangle class private. Based on the above discussion, we need to introduce a static
attribute to hold the singleton. We therefore add the following to the attribute section.

1 private static Rectangle instance = new Rectangle();

March 26, 2015 69

Furthermore, we add the following method to our Rectangle class.

1 public static Rectangle getInstance()
2 {
3 return Rectangle.instance;
4 }

Note that the singleton returned by the getInstance method represents an empty rectangle, that is, a
rectangle with width zero and height zero. This is not a limitation because the client can use the public
mutators to mutate this instance to any desired width or height. The key point is that, regardless of width
and height, there is at most one Rectangle object in memory at all times.

The Rectangle object is created when the Rectangle class is loaded into memory. If the invocation
of the constructor is expensive (in terms of time or memory), we may want to delay the creation of the
Rectangle object until the first invocation of the getInstance method. In that case, we initialize the
attribute instance to null. We will create the singleton upon receiving the very first request from the
client. The null value acts as a flag to enable us to determine if the singleton has or has not been created
yet.

1 private static Rectangle instance = null;

In this case, the getInstance method must determine whether an instance has been created yet. If it has,
then a reference to it should be returned; otherwise, it should be created by means of the private constructor,
stored, and then returned.

1 public static Rectangle getInstance()
2 {
3 if (Rectangle.instance == null)
4 {
5 Rectangle.instance = new Rectangle();
6 }
7 return Rectangle.instance;
8 }

4.4.2 Enforcing One Instance Per State

Rather than allowing just a single instance of the class, as we did in the previous section, in this section we
want to ensure that there is only one instance of our class for every possible combination attribute values.
In other words, we need to create a “singleton for every state.” This is sometimes called the multiton design
pattern.

Consider the following code fragment in a client app and try to predict its output.

1 String first = "York";
2 String second = "York";
3 output.println(first.equals(second) + " - " + (first == second));

70 Franck van Breugel and Hamzeh Roumani

The output is true - true. While it is not surprising that first.equals(second) returns true
(after all, the two strings are made up of the same character sequence), it may be unexpected to see that
first == second returns true as well. After all, the String objects first and second may be
thought to be different objects residing at different addresses in memory. In an effort to save memory, the
Java compiler creates only one instance for each string literal such as "York" and makes all references
point to it. The compiler is therefore enforcing a single instance per state, where state in this case refers to
the characters that make up the string.1

How can we enforce a single instance per state? In order to prevent the client from controlling instanti-
ation, we must make all constructors private, as was done for the singleton. Moreover, we better make all
mutators private (and, hence, the class becomes immutable as we have seen in Section 3.3.2). Otherwise, the
client can change the state and thus create two instances having the same state. And for the singleton pattern,
we should provide a static method named, for example, getInstance. This time, the client should be
able to pass arguments to it to specify the desired state for the requested instance. The body of this method
must determine whether an instance of the desired state has been already created. If it has, then return it;
otherwise, create the instance using a private constructor, store it, and then return it. The attribute to store
the instances has to be static and has to be able to hold many instances, corresponding to many states. It
must therefore be a collection. One can, for example, use a Map whose key represents the state and whose
value represents the lone instance that has that state. The facts that mutators must be private and instance
storage must be in a collection make this scenario slightly different from the singleton design pattern.

Let us apply this by requiring that our Rectangle class allows only one instance for a given width and
height. Based on the above discussion, we need to add a static Map attribute to hold the created instances.
We add the following declaration to the attribute section:

1 private static Map<String, Rectangle> instances = new HashMap<String, Rectangle>()
;

Note that we initialized the attribute to an empty map. Next, we make the three constructors and the two
mutators of the class private. Finally, we add the following method.

1 public static Rectangle getInstance(int width, int height)
2 {
3 String key = width + "-" + height;
4 Rectangle instance = Rectangle.instances.get(key);
5 if (instance == null)

1It should be noted that the compiler does this not only for String literals, but also for Strings constructed using concatenation.
For example,

1 String first = "York";
2 String second = "Y" + "ork";
3 output.println(first.equals(second) + " - " + (first == second));

returns true - true as well. However,

1 String first = new String("York");
2 String second = new String("York");
3 output.println(first.equals(second) + " - " + (first == second));

returns true - false.

March 26, 2015 71

6 {
7 instance = new Rectangle(width, height);
8 Rectangle.instances.put(key, instance);
9 }

10 return instance;
11 }

Note that in order to facilitate storage in the map, we need to come up with a unique key that identifies the
state. In the above implementation we simply concatenated the width and the height after delimiting them
by a hyphen. Alternatives will be discussed in the next section.

4.4.3 Check you Understanding

Refactor the Rectangle class developed in previous section in the following ways.

• Instead of using a String as key, use the class java.awt.Point for the keys of the Map.

• Instead of using a String as key, develop a class Pair with two attributes of type int and use this
class for the keys of the Map.

• Make the class Pair generic and use this class for the keys of the Map.

• Instead of using a Map, use a List to store the instances.

• Instead of using a Map, use a Set to store the instances.

4.5 Beyond the Basics

4.5.1 Synchronized Methods

Now imagine an app in which two snippets of code that use our singleton class are executed at the same time.
These code snippets are so-called runmethods. These runmethods are very similar to mainmethods. The
major difference is that an app only executes a single main method, whereas an app can execute multiple
run methods at the same time. These run methods are said to be executed concurrently.

Let us consider the following run method.

1 public void run()
2 {
3 Rectangle unique = Rectangle.getInstance();
4 }

Recall that the getInstance method is implemented as follows.

1 public static Rectangle getInstance()
2 {
3 if (Rectangle.instance == null)
4 {

72 Franck van Breugel and Hamzeh Roumani

5 Rectangle.instance = new Rectangle();
6 }
7 return Rectangle.instance;
8 }

The body of the above Java method is translated to the following (simplified) bytecode instructions.

1 getstatic Rectangle.instance // get the value of the static attribute
2 ifnonnull 6 // if the value is not null, go to line 6
3 new Rectangle // create a new Rectangle object
4 ...
5 putstatic Rectangle.instance // set the value of the static attribute
6 getstatic Rectangle.instance // get the value of the static attribute
7 areturn // return the value

Now assume that two copies of the above run method are executed concurrently. Each invocation of
the run method has its own invocation block in memory. When both run methods have been invoked, but
have not started the execution of their method body yet, memory can be depicted as follows.

...
100 Rectangle class

null instance
...

200 run invocation
unique

...
300 run invocation

unique
...

Conceptually, the bytecode instructions of the two getInstance method invocations are interleaved
arbitrarily. Below, we will consider one particular interleaving. We use the notation 1.n to denote that the
first invocation of the getInstance method executes the n-th bytecode instruction of its method body.
Similarly, 2.n denotes that the second invocation of the getInstance method executes its n-th bytecode
instruction.

Consider the interleaving 1.1, 2.1, 1.2, 2.2, 1.3, . . . , 1.7, 2.3, . . . , 2.7. In this interleaving, both invoca-
tions first get the value of attribute Rectangle.instance, which has been initialized to null. Next,
both invocations check whether the value is null, which it is. Then the first invocation creates a new
Rectangle object, assigns it to the attribute Rectangle.instance, gets the value of that attribute
and returns it. At this point, memory can be represented as follows.

March 26, 2015 73

...
100 Rectangle class

600 instance
...

200 run invocation
600 unique

...
300 run invocation

unique
...

400 getInstance invocation
...

500 getInstance invocation
...

600 Rectangle object
0 width
0 height

...

Next, the second invocation also creates a new Rectangle object, assigns it to the attribute Rectangle.instance,
gets the value of that attribute and returns it. At this point, memory can be represented as follows.

74 Franck van Breugel and Hamzeh Roumani

...
100 Rectangle class

700 instance
...

200 run invocation
600 unique

...
300 run invocation

700 unique
...

400 getInstance invocation
...

500 getInstance invocation
...

600 Rectangle object
0 width
0 height

...
700 Rectangle object

0 width
0 height

...

Note that two Rectangle objects have been created, instead of one. To avoid this from happening,
one can require that each invocation of getInstance is executed atomically, that is, without interfer-
ence of another invocation of getInstance. In that case, only two interleavings are possible: 1.1, . . . ,
1.7, 2.1, . . . , 2.7 and 2.1, . . . , 2.7, 1.1, . . . , 1.7. In both cases, only a single Rectangle object is cre-
ated. The requirement that a method is executed atomically can be captured by declaring the method to
be synchronized. Hence, if we define the getInstance as follows, only one Rectangle object is
created, no matter how many invocations of getInstance are executed concurrently.

1 public static synchronized Rectangle getInstance()
2 {
3 if (Rectangle.instance == null)
4 {
5 Rectangle.instance = new Rectangle();
6 }
7 return Rectangle.instance;
8 }

Chapter 5

Implementing Aggregation and
Composition

5.1 Implementing Aggregation

5.1.1 What is Aggregation?

Aggregation is a relation. It is also known as the has-a relation. It is a relation on classes. The relation
captures that one class is part of another class. For example, assume that the class Student represents
a student. For each student we want to keep track of the student’s homepage. We decide to represent the
student’s homepage as an instance of the class URL, which is part of the package java.net. In this case,
the classes Student and URL are related by the aggregation relation. We say that Student has a URL,
and URL is called a component of Student. More formally, the pair of classes (A,P) is in the aggregation
relation, that is, A has a P , if the class A contains a non-static attribute of type P . The class A is called the
aggregate and the class P is called the part or component. In the above example, Student is the aggregate
and URL is the part.

The API of the Student class can be found at this link. The header of the three-parameter constructor

public Student(String id, String name, URL homepage)

reflects that the client has to create two instances of the String class and one instance of the URL class in
order to create an instance of the Student class. In the next code fragment, the client creates an instance
of the URL class, creates an instance of the Student class from two String literals and the instance of
the URL class, and finally prints the Student object.

1 URL homepage = new URL("http://www.cse.yorku.ca/˜cse81234/");
2 Student student = new Student("123456789", "Jane Smith", homepage);
3 output.println(student);

The complete client code can be found at this link.

5.1.2 UML and Memory Diagrams

The aggregation relation can be reflected in UML class diagrams. For example, the fact that Student has
a URL can be depicted as follows.

75

http://www.cse.yorku.ca/~buildIt/api//4/aggregation/Student.api
http://www.cse.yorku.ca/~buildIt/code//4/aggregation/StudentClient.java.txt

76 Franck van Breugel and Hamzeh Roumani

String Student URL12

The number 1 in the above class diagram is called the multiplicity of the aggregation. It represents the
number of URL objects that each Student object has: each Student has one URL.

Memory diagrams can also be utilized to reason about aggregation. For example, consider the code
fragment introduced in Section 5.1.1. Once the execution reaches the end of line 1, memory can be depicted
as follows.

...
100 Client.main invocation

300 homepage
student

300 URL object
...

The above diagram reflects that a URL object has been created at address 300 and that the local vari-
able homepage refers to that object.

Once the execution reaches the end of line 2, the memory content has changed and can now be depicted
as follows.

...
100 Client.main invocation

300 homepage
500 student

300 URL object

350 String object

400 String object

500 Student object
300
350
400

...

The diagram now also contains a Student object at address 500 and the local variable student refers to
the Student object. Note also that the Student object refers to the two String objects and the URL

March 26, 2015 77

object as it contains the addresses of these objects. We have not included yet the names of the attributes
which refer to these objects. These attributes will be discussed in the next section.

5.1.3 The Attributes Section

As an implementer, we have to decide on the number of attributes and for each attribute we have to choose
its type and its name. Usually, we look at the constructors and also the accessors and mutators in the API
for inspiration. In the API of the Student class we find a three-parameter constructor with the following
header.

public Student(String id, String name, URL homepage)

In the API, we also encounter the accessors getId, getName and getHomepage and the mutator
setHomepage. These suggest the following three attributes.

1 private String id;
2 private String name;
3 private URL homepage;

Note, however, that choosing the attributes is in general not as simple as picking the parameters of the
constructor with the most parameters. Although the above attributes are a natural choice, other choices are
possible. We will come back to this in Section 5.1.6.

We will implement the constructors and methods in such a way that the following class invariant is
maintained.

1 //@ invariant this.id is a 9-digit string && this.name != null */

As we will see, maintaining this class invariant will allow us to simplify our code.

5.1.4 The Constructors Section

In the constructors, we initialize the attributes id, name and homepage. According to the API, the
Student class has three constructors. One of them takes two arguments (id and name), another has
three parameters (id, name and homepage), and the third one is a copy constructor (and, hence, takes a
single argument of type Student). The two-parameter constructor can be used if the student does not have
a homepage. To avoid code duplication, we will utilize constructor chaining as discussed in Section 3.3.1. In
this case, the two-parameter constructor and the copy constructor both delegate to the three-parameter con-
structor. To reflect the fact that a student does not have a homepage, we initialize the attribute homepage
to null. Hence, the body of the two-parameter constructor may be implemented as follows.

1 this(id, name, null);

The body of the copy constructor can be implemented as follows.

1 this(student.getId(), student.getName(), student.getHomepage());

78 Franck van Breugel and Hamzeh Roumani

To avoid code duplication, we use the accessors. These accessors will be discussed in the next section.
In the three-parameter constructor, we utilize the mutators to initialize the attributes. As we have seen

in Section 3.3.1, this avoids code duplication. Hence, the body of the three-parameter constructor may be
implemented as follows.

1 this.setId(id);
2 this.setName(name);
3 this.setHomepage(homepage);

According to the API, the three-parameter and the two-parameter constructor throw an Illegal-
ArgumentException if the ID provided by the client is not valid. The parameter id, which is of type
String, is valid if

• it is not null,

• it consists of nine digits.

Rather than checking it in the constructor, we have decided to delegate the validation to the mutator setId.
The fact that those constructors throw an IllegalArgumentException if the ID provided by the

client is not valid is reflected in the header of the constructor (and, of course, also in the documentation
comments). For example, the header of the two-parameter constructor is as follows.

1 public Student(String id, String name) throws IllegalArgumentException

One may wonder why the copy constructor does not throw an IllegalArgumentException.1

Intuitively, since the argument, a Student object, was created successfully, its ID is valid. Formally, we
can infer it from the class invariant.

We leave it to the reader to check that the class invariant holds at the end of each constructor invocation.

5.1.5 The Methods Section

Next, we discuss the (public and private) methods of the Student class.

Accessors

For each attribute, we introduce a corresponding accessor. Since all follow the pattern that we introduced in
Section 3.2.4, we only present the accessor for the attribute homepage.

1 public URL getHomepage()
2 {
3 return this.homepage;
4 }

Note that the return type of the above accessor is non-primitive, that is, it returns an object of type URL.

1Since IllegalArgumentException is a RuntimeException and, hence, not a checked exception. Therefore, we do
not need to catch or specify it.

March 26, 2015 79

Mutators

Since we do not want to allow clients to change the name or the ID of a student, we simply make the mutators
setName and setId private. As a consequence, these mutators do not appear in the API and the attributes
name and id are immutable (by the client).

The mutator of the name attribute follows the pattern presented in Section 3.2.4.

1 private void setName(String name)
2 {
3 this.name = name;
4 }

Also the mutator for the homepage attribute follows the same pattern, but this mutator is public.

1 public void setHomepage(URL homepage)
2 {
3 this.homepage = homepage;
4 }

Recall that the mutator of the attribute id not only sets the value of the attribute, but also validates the
passed argument. If the passed ID is invalid, the mutator throws an IllegalArgumentException. For
an ID to be valid, it has to be different from null and consist of nine digits. To check the latter property, we
can use the regular expression \d{9}, which is captured by the string literal "\\d{9}".2 A string matches
this pattern if and only if it consists of nine digits. Hence, we can implement the mutator setId as follows.

1 private void setId(String id) throws IllegalArgumentException
2 {
3 final String PATTERN = "\\d{9}";
4 if (id != null && id.matches(PATTERN))
5 {
6 this.id = id;
7 }
8 else
9 {

10 throw new IllegalArgumentException("Invalid ID");
11 }
12 }

The toString Method

As we already mentioned in Section 3.2.4, most classes override the toString method of the Object
class. Also our Student class overrides the toString method. The method returns a string representa-
tion of the Student object on which it is invoked. According to the API, this string representation, when

2In string literals, the backslash character (’\’) is a so-called escape character. For example, in a string literal the expression \t
represents a tab. The expression \\ represents a single backslash in a string literal.

80 Franck van Breugel and Hamzeh Roumani

printed on the screen, will result in one or two lines. The first line contains the student’s ID and name, sepa-
rated by a colon. The second line is only present if the student has a homepage. In that case, the second line
consists of (a string representation of) the URL of the student’s homepage. For example, for the Student
object created in the code snippet in Section 5.1.1, the invocation of the toString method on this object
results in the following.

123456789:Jane Smith
www.cse.yorku.ca/˜cse81234/

The toString method can be implemented as follows.

1 public String toString()
2 {
3 StringBuffer result = new StringBuffer();
4 result.append(this.getId());
5 result.append(":");
6 result.append(this.getName());
7 if (this.getHomepage() != null)
8 {
9 result.append("\n");

10 result.append(this.getHomepage().toString());
11 }
12 return result.toString();
13 }

Rather than constructing several String objects,3 we decided to use a StringBuffer object instead.
Note that we use two invocations of the toString method in the body of the toString method. In
line 10, we invoke the toStringmethod on the URL object to obtain a string representation of the student’s
homepage. In line 12, we invoke the toString method on the StringBuffer object. Note that we use
the accessors, rather than accessing the attributes directly. This avoids code duplication and makes it easier
to change the representation of the attributes if necessary.

The equals Method

Most classes also override the equalsmethod of the Object class. According to the API of the Student
class, two Student objects are considered equal if their IDs are equal. The equals method has the same
general structure as the one in Section 3.2.4. Instead of comparing the width and the height of a rectangle,
both being represented by attributes of primitive type, we compare the IDs of the students, represented by an
attribute of the non-primitive type String. As a consequence, we use equals, rather than ==, to compare
the IDs of the students.4

3Recall that the class String is immutable and, hence, concatenation does not change the object but returns a new object.
4Although the class String is immutable, it does not implement the “one instance per state” pattern and, hence, we should not

use == to compare String objects. For example, the snippet

String first = new String("123456789");
String second = new String("123456789");

March 26, 2015 81

1 public boolean equals(Object object)
2 {
3 boolean equal;
4 if (object != null && this.getClass() == object.getClass())
5 {
6 Student other = (Student) object;
7 equal = this.getId().equals(other.getId());
8 }
9 else

10 {
11 equal = false;
12 }
13 return equal;
14 }

From the class invariant we can conclude that the invocation this.getId() in line 7 does not return
null. Hence, the invocation of equals in line 7 never throws a NullPointerException.

The hashCode Method

Since we did override the equals method, we had better override the hashCode method as well to satisfy
the property

• if x.equals(y) returns true then x.hashCode() and y.hashCode() return the same integer.

Since students are considered equal if their IDs are the same, we can let the hashCode method return the
ID (as an integer). Note that, according to the class invariant, the ID is a 9-digit string and, therefore, can be
represented as an int. Hence, the hashCode method can be implemented as follows.

1 public int hashCode()
2 {
3 return Integer.parseInt(this.getId());
4 }

The compareTo method

According to the API of the Student class, the class implements the Comparable<Student> inter-
face. As a consequence, we have to implement the single method of that interface: the compareTomethod.
As we have already seen in Section 3.2.4, this method provides an ordering on objects which can be used,
for example, for sorting. The ordering of students is based on an ordering of their IDs. The IDs are ordered

creates two different String objects (and, hence, first == second returns false) which represent the same ID
(first.equals(second) return true). Note that the class Class does implement the “one instance per state” pattern and,
hence, we can use == to compare Class objects.

82 Franck van Breugel and Hamzeh Roumani

lexicographically.5 Hence, to compare two students we can simply get their IDs and delegate the comparison
to the String class.

1 public int compareTo(Student student)
2 {
3 return this.getId().compareTo(student.getId());
4 }

Note that also in this case we use the accessors to get hold of the attributes.
Again we can infer from the class invariant that no NullPointerException is thrown in the body

of the method.
The code of the entire Student class can be found by following this link.

5.1.6 Beyond the Basics

The Attributes Revisited

One may wonder whether we need an attribute of type URL in the class Student. Although it is a natural
choice to represent the student’s homepage by means of the an instance of the URL class, this information
can be represented in several other ways as well. For example, we can represent it as a String object. To
refactor our Student class such that the student’s homepage is represented by an instance of the String
class, we make the following three changes. First of all, we replace the declaration of the homepage
attribute with

1 private String homepage;

We add to the class invariant6

1 this.homepage is a well-formed URL

Secondly, we modify the accessor of the attribute as follows.

1 public URL getHomepage()
2 {
3 URL homepage;
4 if (this.homepage == null)
5 {

5According the API of the String class, if two strings are different, then either they have different characters at some index
that is a valid index for both strings, or their lengths are different, or both. If they have different characters at one or more index
positions, let k be the smallest such index; then the string whose character at position k has the smaller value (recall that characters
can be compared using the < relational operator) lexicographically precedes the other string. In this case, the compareTo method
of the String class returns the difference of the two character values at position k in the two string, that is,

this.charAt(k) - other.charAt(k)

If there is no index position at which they differ, then the shorter string lexicographically precedes the longer string. In this case,
the compareTo method of the String class returns the difference of the lengths of the strings, that is,

this.length() - other.length()

6The string is well-formed if it specifies a legal protocol. Examples of legal protocols include http and ftp.

http://www.cse.yorku.ca/~buildIt/code//4/aggregation/Student.java.txt

March 26, 2015 83

6 homepage = null;
7 }
8 else
9 {

10 try
11 {
12 homepage = new URL(this.homepage);
13 }
14 catch (MalformedURLException e)
15 {
16 homepage = null;
17 }
18 }
19 return homepage;

The API of the URL class tells us that the constructor URL(String) throws a MalformedURLException
if the given string specifies an unknown protocol. Since a MalformedURLException is a checked ex-
ception, the exception has to be either specified or caught. Because the accessor getHomepage does not
specify the exception in the API, we have to catch the exception. Note, however, that we can infer from the
class invariant that new URL(this.homepage) never throws a MalformedURLException.7

Finally, we change the method setHomepage to the following mutator.

1 public void setHomepage(URL homepage)
2 {
3 if (homepage == null)
4 {
5 this.homepage = null;
6 }
7 else
8 {
9 this.homepage = homepage.toString();

10 }
11 }

Note that the new accessor and the mutator have to handle the case that the student has no homepage as a
special case. This complicates the code. Since we generally strive to keep our code as simple as possible,
we prefer to represent the homepage as a URL object, rather than a String object.

The Copy Constructor Revisited

Consider the following fragment of client code that uses the copy constructor.

1 URL homepage = new URL("http://www.cse.yorku.ca/˜cse81234/");
2 Student student = new Student("123456789", "Jane Smith", homepage);

7The compiler, however, does not reach this conclusion since it is not aware of the class invariant.

84 Franck van Breugel and Hamzeh Roumani

3 Student copy = new Student(student);

Once we reach the end of line 3, memory can be depicted as follows.

...
100 Client.main invocation

300 homepage
500 student
800 copy

300 URL object

350 String object

400 String object

500 Student object
300 id
350 name
400 homepage

800 Student object
300 id
350 name
400 homepage

...

Note that both Student objects refer to the same String and URL objects. If we were to change the
state of either one of the String objects or the URL object, both Student object would change. However,
the String class is immutable and, hence, we cannot change the state of String objects. Since the API
of the URL class contains no public mutators, we cannot change the state of URL objects either.

Testing an Aggregate

To test our Student class, we focus on the three-parameter constructor and the accessor getHomepage.
The constructor takes as arguments an ID, a name, and a URL. Hence, to test the constructor we need to
generate two Strings and a URL. According to its precondition, the constructor accepts a name with
name != null. Recall that this constructor throws an IllegalArgumentException if the id is
invalid, that is, it is null or does not consist of nine digits. Therefore, we will distinguish two cases: valid
IDs and invalid IDs.

Let us first consider the case that the ID is valid. In this case, we generate random valid IDs, random
names, and random URLs. We should also consider boundary cases such as the empty string as name and
the value null for the URL. To create a random valid ID, we use the following method.

March 26, 2015 85

1 private static String randomValidID(Random random)
2 {
3 final int MAX_ID = 999999999;
4 String id = String.format("%09d", 1 + random.nextInt(MAX_ID));
5 return id;
6 }

To create a random name, we make the following some simplifying assumptions. A name consists of
letters only (that is, it does not include any Unicode characters) and is composed of a first name and a
last name separated by a single space, where both start with an uppercase letter and all other letters are
lowercase.

1 private static String randomName(Random random)
2 {
3 final int LETTERS = 26;
4 final int AVERAGE_LENGTH = 6;
5

6 int first = AVERAGE_LENGTH + (int) (AVERAGE_LENGTH * random.nextGaussian());
7 StringBuffer firstName = new StringBuffer();
8 firstName.append((char) (’A’ + random.nextInt(LETTERS)));
9 for (int f = 1; f < first; f++)

10 {
11 firstName.append((char) (’a’ + random.nextInt(LETTERS)));
12 }
13

14 int last = AVERAGE_LENGTH + (int) (AVERAGE_LENGTH * random.nextGaussian());
15 StringBuffer lastName = new StringBuffer();
16

17 lastName.append((char) (’A’ + random.nextInt(LETTERS)));
18 for (int f = 1; f < first; f++)
19 {
20 lastName.append((char) (’a’ + random.nextInt(LETTERS)));
21 }
22

23 return firstName + " " + lastName;
24 }

Similarly, we create a random URL.

1 private static URL randomURL(Random random)
2 {
3 URL url = null;
4 do
5 {
6 try

86 Franck van Breugel and Hamzeh Roumani

7 {
8 String spec = ... // a random specification
9 url = new URL(spec);

10 }
11 catch (MalformedURLException e) {}
12 }
13 while (url == null);
14 return url;
15 }

Using the above methods, we test the three-parameter constructor and the getHomepage method by
executing the following code snippet a number of times.

1 Random random = new Random(System.currentTimeMillis());
2

3 String id = StudentTester.randomValidID(random);
4 String name = StudentTester.randomName(random);
5 URL homepage = StudentTester.randomURL(random);
6

7 Student student = new Student(id, name, homepage);
8

9 if (!student.getHomepage().equals(homepage))
10 {
11 output.print("Either the three-parameter constructor or the method getHomepage

failed the test case: ");
12 output.printf("id = %s, name = %s, homepage = %s%n", id, name, homepage);
13 }

Similarly, we can test the above mentioned boundary cases.
Next, we consider the case that the ID is invalid. Obviously, null is an invalid ID. Otherwise, the ID

either does not have length 9 or does not solely consist of digits. The method randomInvalidID either
returns a string consisting of digits, the length of which is different from 9, or it returns a string of length 9
that contains one of more letters.

1 private static String randomInvalidID(Random random)
2 {
3 StringBuffer id = new StringBuffer();
4

5 if (random.nextBoolean())
6 {
7 final int MAX_LENGTH = 20;
8 final int DIGITS = 10;
9 final int VALID_LENGTH = 9;

10

11 int length;
12 do

March 26, 2015 87

13 {
14 length = random.nextInt(MAX_LENGTH + 1);
15 }
16 while (length == VALID_LENGTH);
17

18 for (int l = 0; l < length; l++)
19 {
20 char digit = (char) (’0’ + random.nextInt(DIGITS));
21 id.append(digit);
22 }
23 }
24 else
25 {
26 final int MAX_ID = 999999999;
27 final int LETTERS = 26;
28

29 id.append(String.format("%09d", 1 + random.nextInt(MAX_ID)));
30 int change = 1 + random.nextInt(id.length());
31 for (int c = 0; c < change; c++)
32 {
33 int index = random.nextInt(id.length());
34 char letter = (char) (’a’ + random.nextInt(LETTERS));
35 id.replace(index, index + 1, "" + letter);
36 }
37 }
38

39 return id.toString();
40 }

Using the above method, we test the three-parameter constructor by executing the following code snippet
a number of times.

1 Random random = new Random(System.currentTimeMillis());
2

3 String id = StudentTester.randomInvalidID(random);
4 String name = StudentTester.randomName(random);
5 URL homepage = StudentTester.randomURL(random);
6

7 try
8 {
9 Student student = new Student(id, name, homepage);

10 output.print("The three-parameter constructor failed the test case: ");
11 output.printf("id = %s, name = %s, homepage = %s%n", id, name, homepage);
12 }
13 catch (IllegalArgumentException e) {}

88 Franck van Breugel and Hamzeh Roumani

Since the ID is invalid, the three-parameter constructor invoked in line 9 should throw an Illegal-
ArgumentException which is then caught in line 13. If the constructor does not throw an exception,
line 10–11 are executed, which signals the failure of the test. Similarly, we can test the invalid ID null.

The full tester can be found following this link.

5.2 Implementing Composition

5.2.1 What is Composition?

Composition is a special type of aggregation. Hence, it is also a relation on classes. The composition relation
not only captures that one class is part of another class. An instance of the latter class can be said to “own”
an instance of the former class. As an example, we will modify our Student class. For each student, we
also keep track of the student’s date of joining the university. Let us represent this date by an instance of the
Date class, which is part of the java.util package.

The API of this modification of the Student class can be found at this link. To create an instance of the
Student class, the client also has to provide an instance of the Date class. In the next code snippet, the
client creates an instance of the URL class, an instance of the Date class, and an instance of the Student
class.

1 URL homepage = new URL("http://www.cse.yorku.ca/˜cse81234/");
2 Date now = new Date();
3 Student student = new Student("123456789", "Jane Smith", homepage, now);

A key difference between the class Date and the classes URL and String is that the class Date is
mutable, whereas the other classes are not. For example, the client can get the student’s date of joining the
university and add one hour to it as follows.

4 Date date = student.getJoinDate();
5 final long HOUR_IN_MILLISECONDS = 60 * 60 * 1000;
6 date.setTime(date.getTime() + HOUR_IN_MILLISECONDS);

The method getTime returns the number of milliseconds from January 1, 1970, 00:00:00 GMT until the
date represented by the Date object on which it is invoked.

Recall that the classes Student and Date form a composition, that is, a Student object “owns”
its Date object. This means that the Student object has exclusive access to its Date object. Others,
including the client, do not have access to this object and, therefore, cannot modify the Date object.

The accessor getJoinDate cannot return a reference to the Date object of the Student object. If
the accessor getJoinDate were to return a reference to the Date object of the Student object, then
the above code snippet would mutate the Date object “owned” by the Student. Hence, Student and
Date would not form a composition.

Rather than returning a reference to the Date object of the Student object, the accessor getJoinDate
returns the reference to a copy of that Date object. Hence, the above code snippet mutates the copy of the
Date object, not the Date object “owned” by the Student object.

http://www.cse.yorku.ca/~buildIt/api//4/composition/Student.api

March 26, 2015 89

5.2.2 UML and Memory Diagrams

Also the composition relation can be reflected in UML class diagrams. For example, the fact that the classes
Student and Date form a composition can be depicted as follows.

String Student URL

Date

12

1

Memory diagrams can also be very helpful to reason about composition. For example, consider the code
fragment introduced in Section 5.2.1. Once the execution reaches the end of line 3, memory can be depicted
as follows.

...
100 Client.main invocation

600 student
date

200 String object

300 String object

400 URL object

500 Date object

600 Student object
200 id
300 name
400 homepage
500

...

Once we reach the end of line 4, the above memory diagram has changed into the one below.

90 Franck van Breugel and Hamzeh Roumani

...
100 Client.main invocation

600 student
700 date

200 String object

200 String object

400 URL object

500 Date object

600 Student object
200 id
300 name
400 homepage
500

700 Date object
...

Note that the local variable date refers to the new instance of the Date class at address 700, and not
to the instance of the Date class at address 500. The latter Date object is “owned” by the Student. As a
consequence, in line 6 the Date object “owned” by the Student object is not modified. Instead, its copy
located at address 700 is changed.

5.2.3 The Attributes Section

A natural choice to represent the additional information, the date at which the student joined the university,
is an attribute of type Date. Hence, we add the following declaration to our Student class.

1 private Date joinDate;

We strengthen the class invariant by adding this.joinDate != null.

5.2.4 The Constructors Section

According to the API, the class Student contains five constructors. As in Section 5.1.4, we exploit con-
structor chaining to avoid code duplication. Here, we focus on the constructor to which all other constructors
delegate: the four-parameter constructor with the following header.

public Student(String id, String name, URL homepage, Date joinDate)

We focus on the fourth parameter. Before implementing the constructor, we first consider the following
fragment of client code.

March 26, 2015 91

1 URL homepage = new URL("http://www.cse.yorku.ca/˜cse81234/");
2 Date now = new Date();
3 Student student = new Student("123456789", "Jane Smith", homepage, now);
4 final long HOUR_IN_MILLISECONDS = 60 * 60 * 1000;
5 now.setTime(now.getTime() + HOUR_IN_MILLISECONDS);

The above example shows that we cannot initialize the attribute joinDate to (the address of) the
Date object (referred to by) now. If we were to initialize the attribute joinDate to the Date object
now, then the client would have access to the Date object “owned” by the Student object by means of
its local variable now. Hence, the Student object would not have exclusive access to its Date object and,
therefore, the classes Student and Date would not form a composition.

Instead of initializing the attribute joinDate to the Date object passed as an argument, we initialize
the attribute to a copy of the passed Date object. This copy is the Date object which is “owned” by the
Student object. Note that the client does not have access to this copy.

Consider the above snippet of client code. Assume that the memory can be depicted as follows once we
reach the end of line 2.

...
100 Client.main invocation

200 homepage
300 now

student

200 URL object

300 Date object
...

When we reach the end of line 3, memory can be depicted as follows.

92 Franck van Breugel and Hamzeh Roumani

...
100 Client.main invocation

200 homepage
300 now
700 student

200 URL object

300 Date object

400 String object

500 String object

600 Date object

700 Student object
400 id
500 name
200 homepage
600 joinDate

...

Note that the Student object refers to a Date different from the one known to the client. Hence,
in line 5 of the above code snippet the Date object at address 300 is modified, not the Date object at
address 600 which is “owned” by the Student object.

Let us return to our attempt to implement the four-parameter constructor. From the above discussion
we can conclude that we have to initialize the joinDate attribute to a copy of the passed Date object.
Rather than doing the copying in the constructor, we delegate this to the mutator of the joinDate attribute.
Hence, the four-parameter constructor can be implemented as follows.

1 public Student(String id, String name, URL homepage, Date joinDate) throws
IllegalArgumentException

2 {
3 this.setId(id);
4 this.setName(name);
5 this.setHomepage(homepage);
6 this.setJoinDate(joinDate);
7 }

5.2.5 The Methods Section

Next, we only discuss the methods of the Student class which are either new or modified.

March 26, 2015 93

Accessor

As we already discussed in Section 5.2.1, the accessor of the joinDate attribute has to return a copy of
the Date object “owned” by the Student object. Unfortunately, the Date class does not have a copy
constructor. However, it has a constructor that is very similar to a copy constructor. The constructor

Date(long time)

creates a Date object which represents the date which is the given number of milliseconds (captured by the
parameter time) after “the epoch”, namely January 1, 1970, 00:00:00 GMT. Hence, using this constructor
in combination with the method getTime, which we already saw in Section 5.2.1, we can implement the
accessor for the joinDate attribute as follows.

1 public Date getJoinDate()
2 {
3 return new Date(this.joinDate.getTime());
4 }

Mutator

Since the API of the Student class does not contain a mutator for the joinDate attribute, we make the
mutator private. Recall that the four-parameter constructor delegates the copying of the argument of type
Date to the mutator. We use the same technique as used in the accessor to copy the Date object.

1 private void setJoinDate(Date joinDate)
2 {
3 this.joinDate = new Date(joinDate.getTime());
4 }

The toString Method

Since the class contains some additional information, namely the date the student joined the university, we
want to reflect this additional information in the string representation returned by the toString method.
In particular, we add one line to the string representation. This line contains the date at which the student
joined the university. This date is represented as

• the month, formatted as two digits with leading zeros as necessary, and

• the year, formatted as four digits with leading zeros as necessary,

separated by a ’/’. To format the date properly, we exploit the format method of the String class as
follows. The specifiers %1$tm and %1$tY represent the month and year, respectively.

1 public String toString()
2 {
3 StringBuffer result = new StringBuffer();
4 result.append(this.getId());

94 Franck van Breugel and Hamzeh Roumani

5 result.append(":");
6 result.append(this.getName());
7 if (this.getHomepage() != null)
8 {
9 result.append("\n");

10 result.append(this.getHomepage().toString());
11 }
12 result.append("\n");
13 result.append(String.format("%1$tm/%1$tY", this.getJoinDate()));
14 return result.toString();
15 }

The code of the entire Student class can be found by following this link.

5.2.6 Beyond the Basics

The Copy Constructor Revisited

Consider the following fragment of client code that uses the copy constructor.

1 URL homepage = new URL("http://www.cse.yorku.ca/˜cse81234/");
2 Date joinDate = new Date();
3 Student student = new Student("123456789", "Jane Smith", homepage, joinDate);
4 Student copy = new Student(student);

Once we reach the end of line 4, memory can be depicted as follows.

http://www.cse.yorku.ca/~buildIt/code//4/composition/Student.java.txt

March 26, 2015 95

...
100 Client.main invocation

300 homepage
450 joinDate
600 student
800 copy

300 URL object

350 String object

400 String object

450 Date object

500 Date object

600 Student object
300 id
350 name
400 homepage
500 joinDate

750 Date object

800 Student object
300 id
350 name
400 homepage
750 joinDate

...

Note that the Date objects on addresses 450, 500 and 750 all have the same state. The one at 450 is
used in the main method. The one at 500 is “owned” by the student object and the one at 750 is “owned”
by the copy object.

Delegating to Methods

Since both the accessor getJoinDate and the mutator setJoinDate make a copy of a Date object,
we may encapsulate this copying in a private copy method and let the accessor and mutator delegate to this
copy method for the copying. What does this copy method do? It takes a Date object as an argument
and returns a copy of it. Note that this copy method does not need any other information (such as the ID of
the student) and, therefore, can be declared to be static.

96 Franck van Breugel and Hamzeh Roumani

1 private static Date copy(Date date)
2 {
3 return new Date(date.getTime());
4 }
5

6 public Date getJoinDate()
7 {
8 return Student.copy(this.joinDate);
9 }

10

11 private void setJoinDate(Date joinDate)
12 {
13 this.joinDate = Student.copy(joinDate);
14 }

Replacing Date with Calendar

Instead of using a Date object to represent the date of joining, we can use a Calendar object instead. Let
us discuss the changes that have to be made to our Student class.

First of all, instead of declaring an attribute of type Date we introduce an attribute of type Calendar
as follows.

1 private Calendar calendar;

In the class invariant we replace this.joinDate != null with this.calendar != null.
Furthermore, we have to change the accessor getJoinDate and the mutator setJoinDate.

1 public Date getJoinDate()
2 {
3 return this.calendar.getTime();
4 }
5

6 private void setJoinDate(Date joinDate)
7 {
8 this.calendar = Calendar.getInstance();
9 this.calendar.setTime(joinDate);

10 }

Recall that the mutator setJoinDate is invoked in the constructor, at which point the attribute calendar
has not been initialized yet. Therefore, we first initialize the calendar attribute in the mutator setJoinDate
and we subsequently set it to joinDate.

Since all the constructors and all other methods use the accessor and mutator, rather than manipulating
the attribute directly, we do not have to make any changes to them.

March 26, 2015 97

5.3 Implementing Aggregation Using Collections

5.3.1 What is a Collection?

Assume we want to modify our Student class and keep track of two additional pieces of information.
First of all, we want to record the student’s gpa for each year of study (that is, for first year, second year,
third year and fourth year). Secondly, we want to keep track of the courses the student has taken. The API
of the modified Student class can be found at this link.8

If a course is represented by an instance of the Course class,9 then a Student may have zero, one
of more Courses. The Student class has a collection of Courses. A collection is a special type of
aggregation where the number of components may vary.

In the following snippet of client code, we create a Studentwith ID 123456789, we add two courses,
and finally print all courses.

1 Student student = new Student("123456789");
2 final int FIRST = 1020;
3 final int SECOND = 1030;
4 student.addCourse(new Course(FIRST));
5 student.addCourse(new Course(SECOND));
6 Iterator<Course> iterator = student.iterator();
7 while (iterator.hasNext())
8 {
9 output.println(iterator.next());

10 }

The complete client code can be found at this link.

5.3.2 The Attributes Section

The API of the Student class contains a single public attribute named NUMBER OF YEARS. As we can
see in the API, this attribute is static and it is a constant of type int. In the API, we can also find its value,
which is four. Hence, we introduce the following declaration and initialization.

1 public static final int NUMBER_OF_YEARS = 4;

As an implementer, we have to decide how to represent the additional information: the four gpa’s and
the collection of courses. Since the constructors of the modified class have the same headers10 as the those
of the original class, we look at the methods for inspiration.

Let us first have a look at all those methods that manipulate the gpa’s.

public double getGpa(int year)
public void setGpa(int year, double gpa)

The method getGpa returns the student’s gpa of the given year. For example, student.getGpa(2)
returns the gpa of student for the second year. The setGpa method sets the gpa of the given year to the

8To simplify the Student class a little, we do not keep track of the name, URL and join date.
9The API of the Course class can be found at this link.

10The headers are not exactly the same, since we do not consider the student’s name, home page and join date.

http://www.cse.yorku.ca/~buildIt/api//5/Student.api/Student.html
http://www.cse.yorku.ca/~buildIt/code//5/StudentClient.java.txt
http://www.cse.yorku.ca/~buildIt/api//5/Student.api/Course.html

98 Franck van Breugel and Hamzeh Roumani

given gpa. For example, student.setGpa(2, 8.15) sets the gpa of the second year of student to
8.15.

Given the above method headers, we may decide to represent each gpa by a double or an instance of its
wrapper class Double. To represent the four gpa’s we can use, for example, the following four attributes.

1 private double first;
2 private double second;
3 private double third;
4 private double fourth;

However, this choice will lead to the use of conditionals in the implementation of the methods getGpa
and setGpa which renders code that is error prone and not scalable. To avoid the use of conditionals
(simplifying the implementation of getGpa and setGpa), we can represent the four gpa’s as a collection.
In particular, we can use either a List, a Set or a Map. Since the collection of gpa’s may contain duplicates
(the student may, for example, have the exact same gpa in first and second year), a Set is not appropriate
for representing the collection. Let us represent the collection of gpa’s as a List of Doubles.11 To the
attribute section of the Student class we add the following declaration.

1 private List<Double> gpas;

Note that Listis an interface. As we already discussed in Section 2.6.1, using interfaces may make our
code more versatile.

Let us also have a look at all those methods that manipulate the collection of courses.

public void addCourse(Course course)
public Iterator<Course> iterator()

The addCourse method adds the given course to the collection of courses taken by the student. The
iterator method returns an Iterator object. The latter object can be used to enumerate the courses
taken by the student using the methods next and hasNext.

Each course is represented by an instance of the Course class. Since the collection of courses does
not contain duplicates (we do not keep track of the number of times the student takes a course), a Set is
more appropriate than a List. Hence, we also add the following declaration to the attribute section of the
Student class.

1 private Set<Course> courses;

Recall that there is a difference between null, which represents no object at all, and an object that
represents an empty list or set. Since we want the attributes gpas and courses to always refer to a List
object and a Set object, respectively, we strengthen the class invariant with the following.

1 this.gpas != null && this.courses != null

We leave it to the reader to verify that all public constructors establish this class invariant and that all
public methods maintain this class invariant.

The classes discussed above are related as follows.
11In Section 5.3.5 we will show that a Map can be used as well.

March 26, 2015 99

Double List〈Double〉 Student Set〈Course〉 Course

String

4 1 1 *

1

The ∗ in the above class diagram indicates the multiplicity of the aggregation. It represents the number
of Course objects that each Student object has: each Student has a variable number of Courses.

5.3.3 The Constructors Section

In the API of the Student class we find the following two constructor headers.

public Student(String id)
public Student(Student student)

The first constructor creates a Student with the given id, an empty collection of courses, and initializes
all four gpa’s to zero. The second one is a copy constructor. Neither the first one can delegate to the second
one, nor the second one can delegate to the first one.

The one-parameter constructor has to initialize the attribute id to the argument of the constructor, the
attribute gpas to a list of four zeroes, and the attribute courses to an empty set. Since List and Set are
interfaces, they cannot be instantiated. Hence, we have to create instances of classes that implement these
interfaces. The List interface is implemented by classes such as ArrayList and LinkedList, and the
Set interface is implemented by classes such as HashSet and TreeSet. Let us pick ArrayList and
HashSet. Then the one-parameter constructor can be implemented as follows.

1 public Student(String id)
2 {
3 this.setId(id);
4 List<Double> gpas = new ArrayList<Double>(Student.NUMBER_OF_YEARS);
5 for (int i = 0; i < Student.NUMBER_OF_YEARS; i++)
6 {
7 gpas.add(0.0);
8 }
9 this.setGpas(gpas);

10 Set<Course> courses = new HashSet<Course>();
11 this.setCourses(courses);
12 }

We create an empty list in line 4 and add four zeroes to that list in line 5–8. In line 10 we create an empty
set.

The copy constructor can be implemented in several different ways. To compare the different imple-
mentations, we will consider the following snippet of client code.

100 Franck van Breugel and Hamzeh Roumani

1 Student student = new Student("123456789");
2 final int FIRST = 1020;
3 final int SECOND = 1030;
4 student.addCourse(new Course(FIRST));
5 student.addCourse(new Course(SECOND));
6 Student copy = new Student(student);
7 final int THIRD = 2011;
8 student.addCourse(new Course(THIRD));

After the execution has reached the end of line 5, memory can be depicted as follows.

...
100 Client.main invocation

200 student
1020 FIRST
1030 SECOND

copy
THIRD

200 Student object
300 id
400 gpas
600 courses

300 String object

400 ArrayList object
500
500
500
500

...

...
500 Double object

600 HashSet object
700
800

700 Course object
1020 number

800 Course object
1030 number

...

Since the class Double implements the pattern “one instance per state”, the above memory diagram con-
tains only a single Double object.

Alias

We can implement the copy constructor in such a way that the attribute gpas of this object and the
attribute gpas of the student object are merely aliases, that is, they both refer to the same object. The
attribute courses can be initialized similarly. This leads to the following implementation of the copy
constructor.

1 public Student(Student student)

March 26, 2015 101

2 {
3 this.setId(student.getId());
4 this.setGpas(student.getGpas());
5 this.setCourses(student.getCourses());
6 }

Once the execution of the above snippet of client code reaches the end of line 8, memory can be depicted
as follows.

...
100 Client.main invocation

200 student
1020 FIRST
1030 SECOND
900 copy
2011 THIRD

200 Student object
300 id
400 gpas
600 courses

300 String object

400 ArrayList object
500
500
500
500

500 Double object
...

...
600 HashSet object

700
800
1000

700 Course object
1020 number

800 Course object
1030 number

900 Student object
300 id
400 gpas
600 courses

1000 Course object
2011 number

...

Note that the values of the attributes gpas and courses of both Student objects are the same. As a
consequence, both student and copy have three courses.

Shallow Copy

As an alternative, we can implement the copy constructor in such a way that the attribute gpas of the
student object is a shallow copy of the attribute gpas of this object. The attribute courses can be
initialized similarly. This leads to the following implementation of the copy constructor.

1 public Student(Student student)
2 {
3 this.setId(student.getId());

102 Franck van Breugel and Hamzeh Roumani

4 List<Double> gpas = new ArrayList(student.getGpas());
5 this.setGpas(gpas);
6 Set<Course> courses = new HashSet(student.getCourses());
7 this.setCourses(courses);
8 }

We use the copy constructors of the classes ArrayList and HashSet. From the class invariant we can
deduce that neither student.getGpas() nor student.getCourses() returns null. As a conse-
quence, neither copy constructor throws a NullPointerException.

Once the execution of the above snippet of client code reaches the end of line 8, memory can be depicted
as follows.

...
100 Client.main invocation

200 student
1020 FIRST
1030 SECOND
900 copy
2011 THIRD

200 Student object
300 id
400 gpas
600 courses

300 String object

400 ArrayList object
500
500
500
500

500 Double object

600 HashSet object
700
800
1200

...

...
700 Course object

1020 number

800 Course object
1030 number

900 Student object
300 id
1000 gpas
1100 courses

1000 ArrayList object
500
500
500
500

1100 HashSet object
700
800

1200 Course object
2011 number

...

This time the values of the attributes gpas and courses of both the Student objects are different.
Observe also that student has three courses, but copy has only two. Finally, note that both HashSet
objects contain the same Course objects at the addresses 700 and 800.

March 26, 2015 103

Deep Copy

In our final implementation of the copy constructor, we ensure that the courses attribute of the student
object is a deep copy of the courses attribute of this object. Since the class Double is immutable, it
makes no sense to create a deep copy of the gpas attribute. Hence, we use a shallow copy instead.

1 public Student(Student student)
2 {
3 this.setId(student.getId());
4 List<Double> gpas = new ArrayList(student.getGpas());
5 this.setGpas(gpas);
6 Set<Course> courses = new HashSet<Course>();
7 Iterator<Course> iterator = student.iterator();
8 while (iterator.hasNext())
9 {

10 Course course = iterator.next();
11 courses.add(new Course(course));
12 }
13 this.setCourses(courses);
14 }

In line 6, we create an empty collection. In line 7–12, we add a copy of each course, using the copy
constructor of the Course class, to this collection.

Once the execution of the above snippet of client code reaches the end of line 8, memory can be depicted
as follows.

104 Franck van Breugel and Hamzeh Roumani

...
100 Client.main invocation

200 student
1020 FIRST
1030 SECOND
900 copy
2011 THIRD

200 Student object
300 id
400 gpas
600 courses

300 String object

400 ArrayList object
500
500
500
500

500 Double object

600 HashSet object
700
800
1400

...

...
700 Course object

1020 number

800 Course object
1030 number

900 Student object
300 id
1000 gpas
1100 courses

1000 ArrayList object
500
500
500
500

1100 HashSet object
1200
1300

1200 Course object
1020 number

1300 Course object
1030 number

1400 Course object
2011 number

...

This time, the HashSet objects contain different Course objects. If we were to execute also the following
snippet

9 iterator = student.iterator();
10 Course course = iterator.next();
11 final int NEW = 1021;
12 course.setNumber(NEW);

only the Course object at address 700 would change to the following.

700 Course object
1021 number

March 26, 2015 105

5.3.4 The Methods Section

Here, we only discuss the methods which are new. That is, we consider the implementation of the following
four methods.

public double getGpa(int year)
public void setGpa(int year, double gpa)
public void addCourse(Course course)
public Iterator<Course> iterator()

Recall that the gpa’s are represented by a List of Doubles. Hence, returning the gpa of the second
year amounts to returning the second element of the list. To retrieve this element from the list, we can
simply delegate to the get method of the List interface. Since the index of the first element of a list is
zero, the index of the gpa of the given year is year− 1. Hence, the getGpa method can be implemented
as follows.

1 public double getGpa(int year)
2 {
3 return this.getGpas().get(year - 1);
4 }

To implement the setGpa method, we delegate to the set method of the List interface as follows.

1 public void setGpa(int year, double gpa)
2 {
3 this.getGpas().set(year - 1, gpa);
4 }

The collection of courses is represented by a Set of Courses. Adding a given course to this collec-
tion can be implemented to simply delegating to the add method of the Set interface.

1 public void addCourse(Course course)
2 {
3 this.getCourses().add(course);
4 }

The add method of the Set interface returns a boolean. Note that we simply discard that returned boolean
in the above method.

Finally, we implement the iterator method. This method returns an Iterator object that allows
us to enumerate the courses. Again, we can simply delegate to the Set interface.

1 public Iterator<Course> iterator()
2 {
3 return this.getCourses().iterator();
4 }

Note that, when implementing the bodies of above methods, the implementer takes on the role of a client
of the List and Set interfaces.

106 Franck van Breugel and Hamzeh Roumani

The interface Iterable contains the single method iterator. Since we have implemented the
iterator method, our Student class implements Iterable<Course>. This is reflected in the
header of the class Student as follows.

1 public class Student implements Comparable<Student>, Iterable<Course>

Implementing this interface allows a Student object to be the target of the “foreach” statement.12 For
example, line 6–10 of the client snippet presented in Section 5.3.1 can be replaced with

6 for (Course course : student)
7 {
8 output.println(course);
9 }

5.3.5 Beyond the Basics

Using a Map

Instead of a List, we can also use a Map to represent the four gpa’s. The attribute maps years, represented
by Integers, to gpa’s, represented by Doubles. In our implementation we replace the declaration of a
List with the following declaration of a Map.

1 private Map<Integer, Double> gpas;

To initialize this attribute, we replace line 4–9 of the one parameter constructor with

4 Map<Integer, Double> gpas = new HashMap<Integer, Double>();
5 for (int year = 1; year <= Student.NUMBER_OF_YEARS; year++)
6 {
7 gpas.put(year, 0.0);
8 }
9 this.setGpas(gpas);

Here, we only consider the copy constructor that makes a shallow copy. In that case, we replace line 4 with

4 Map<Integer, Double> gpas = new HashMap<Integer, Double>(student.getGpas());
5 this.setGpas(gpas);

In this setting the methods getGpa and setGpa can be implemented as

1 public double getGpa(int year)
2 {
3 return this.getGpas().get(year);
4 }

and
12This is something specific to Java.

March 26, 2015 107

1 public void setGpas(int year, double gpa)
2 {
3 this.getGpas().put(year, gpa);
4 }

108 Franck van Breugel and Hamzeh Roumani

Chapter 6

Implementing Inheritance

6.1 What is Inheritance?

Inheritance is a relation. It is also known as the is-a relation. It is a relation on classes. The relation captures
that one class extends another class. The class that is extended is known as the superclass and the class that
extends the superclass is known as the subclass. The subclass inherits certain features from the superclass.
In particular, the subclass inherits the public non-static methods of its superclass.1

A golden rectangle is a rectangle made out of gold. Besides a width and a height, it also has a weight.
The GoldenRectangle class extends the Rectangle class. It defines a special type of rectangle and
adds a weight to each rectangle. Its API can be can be found at this link.

In the code snippet below, we create a GoldenRectangle. The GoldenRectangle class inher-
its the scale method of the Rectangle class. Phrased differently, since a GoldenRectangle is a
Rectangle, we can scale it.

1 final int WIDTH = 3;
2 final int HEIGTH = 4;
3 final int WEIGHT = 80;
4 GoldenRectangle rectangle = new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);
5 final int FACTOR = 3;
6 rectangle.scale(FACTOR);

6.2 UML and Memory Diagrams

The inheritance relation can be depicted in UML class diagrams. For example, the following diagram
captures the inheritance relation between the classes mentioned in the previous section.

1It also inherits public attributes of its superclass. However, we declare all non-static attributes to be private and we access all
public static attributes and all public static methods via the class(name). Hence, we can restrict our attention to public non-static
methods.

109

http://www.cse.yorku.ca/~buildIt/api//5/GoldenRectangle.api

110 Franck van Breugel and Hamzeh Roumani

Object

Rectangle

GoldenRectangle

Recall that the state of an object consists of its non-static attributes and their values. Although the private
non-static attributes of a class are not inherited by its subclasses, they are part of the state of objects of those
subclasses. For example, the Rectangle class contains private non-static attributes named width and
height. Since our GoldenRectangle class is a subclass of the Rectangle class, the attributes
width and height and their values are part of the state of a GoldenRectangle object.

Since a GoldenRectangle has a weight, we will introduce an attribute named weight to capture
that additional information.

Consider the client code of the previous section. When we reach the end of line 4, memory can be
depicted as follows.

...
100 Client.main invocation

3 WIDTH
4 HEIGHT
80 WEIGHT

rectangle
FACTOR

200 GoldenRectangle object
3 width
4 height
80 weight

...

Note that we use a different colour for the part of the state which corresponds to attributes of the superclass.
This reflects that these attributes cannot be accessed directly.

6.3 The GoldenRectangle Class

As we already mentioned in Section 6.1, a GoldenRectangle is a Rectanglemade of gold and, hence,
our class GoldenRectangle extends the Rectangle class. To reflect that the GoldenRectangle

March 26, 2015 111

class is a subclass of the Rectangle class, we use the following class header.

1 public class GoldenRectangle extends Rectangle

6.3.1 The Attributes Section

A GoldenRectangle is a Rectangle with some additional information, namely its weight (in grams).
Based on the signature of the three parameter constructor and the signature of the accessor getWeight,
we decide to represent this additional information by means of an attribute of type int. We declare this
attribute as follows.

1 private int weight;

Note that we do not introduce attributes to capture the width and height of the golden rectangle. This
information is already represented by attributes of the Rectangle class and, hence, is already part of the
state of a GoldenRectangle object.

As class invariant, we use

1 this.weight >= 0

6.3.2 The Constructors Section

Recall that the state of an object is initialized in the constructors. Since the attributes width and height
are part of the state of a GoldenRectangle object, in the snippet

1 final int WIDTH = 3;
2 final int HEIGHT = 4;
3 final int WEIGHT = 80;
4 GoldenRectangle rectangle = new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

the attributes width, height and weight get initialized. But how can we initialize the attributes width
and height? These attributes are private and, hence, cannot be accessed directly. However, within the
body of a constructor we can delegate to a constructor of the superclass. Hence, within the body of the three
parameter constructor of the GoldenRectangle, we can delegate to the two parameter constructor of its
superclass Rectangle.

To delegate to a constructor of the superclass, we use the keyword super. In the three parameter
constructor of the GoldenRectangle class, we delegate to the two parameter constructor of the super-
class Rectangle using super(width, height). In this way, we initialize the attributes width and
height. To initialize the weight, we use the private mutator setWeight. This results in the following
constructor implementation.

1 public GoldenRectangle(int width, int height, int weight)
2 {
3 super(width, height);
4 this.setWeight(weight);
5 }

112 Franck van Breugel and Hamzeh Roumani

Consider the above lines of client code. When executing line 4 of the client code, first a block of memory
for the attributes of the GoldenRectangle class and its superclass Rectangle is allocated.

...
100 Client.main invocation

3 WIDTH
4 HEIGHT
80 WEIGHT

rectangle

200 GoldenRectangle object
width
height
weight

...

Next, the three parameter constructor of the GoldenRectangle class is invoked. The corresponding
invocation block can be depicted as follows.

...
800 GoldenRectangle invocation

200 this
3 width
4 height
80 weight

...

Within the body of the three parameter constructor of the GoldenRectangle class, the two parameter
constructor of the Rectangle class is invoked by means of super(width, height). Recall that we
implemented the two parameter constructor of the Rectangle class as follows.

1 public Rectangle(int width, int height)
2 {
3 this.width = width;
4 this.height = height;
5 }

The invocation super(width, height) gives rise to an invocation block which can be depicted as
follows.

...
900 Rectangle invocation

200 this
3 width
4 height

...

March 26, 2015 113

Note that in the invocation super(width, height), the parameter this is implicit.
Within the body of the two parameter constructor of the Rectangle class, we assign values to the

attributes width and height of this object, that is, the object at address 200. Hence, once we reach the
end of line 4 of the above constructor, the attributes width and height of the object at address 200 have
the values 3 and 4, respectively.

...
200 GoldenRectangle object

3 width
4 height

weight
...

Next, line 4 of the three parameter constructor of the GoldenRectangle class is executed. In this line, the
weight attribute is initialized. Once the execution reaches the end of that line, the GoldenRectangle
object can be depicted as follows.

...
200 GoldenRectangle object

3 width
4 height
80 weight

...

Next, we implement the copy constructor. It can be implemented in several different ways. For example,
we can delegate to the copy constructor of the superclass.

1 public GoldenRectangle(GoldenRectangle copied)
2 {
3 super(copied);
4 this.setWeight(copied.getWeight());
5 }

The Java compiler requires that the super(...) statement be the first statement of the constructor.

6.3.3 The Methods Section

Before we implement the methods of our GoldenRectangle class, let us have a look at its superclasses
Object and Rectangle and some of their methods.

114 Franck van Breugel and Hamzeh Roumani

Object
equals(Object) : boolean
hashCode() : int
toString() : String

Rectangle
compareTo(Rectangle) : int
equals(Object) : boolean
getArea() : int
getHeight() : int
getWidth() : int
hashCode() : int
scale(int)
setHeight(int)
setWidth(int)
toString() : String

GoldenRectangle
equals(Object) : boolean
getWeight() : int
hashCode() : int
toString() : String

Note that we inherit the methods compareTo, getArea, getHeight, getWidth, scale, setHeight
and setWidth. We override the methods equals, hashCode and toString. The method getWeight
is new.

The equals Method

Two golden rectangles are the same if they have not only the same width and height, but also the same
weight. To implement the equals method, we start with the usual skeleton.

1 public boolean equals(Object object)
2 {

March 26, 2015 115

3 boolean equal;
4 if (object != null && this.getClass() == object.getClass())
5 {
6 GoldenRectangle other = (GoldenRectangle) object;
7 equal = ???;
8 }
9 else

10 {
11 equal = false;
12 }
13 return equal;
14 }

To check if this golden rectangle has the same weight as the other golden rectangle we can use

7 this.getWeight() == other.getWeight()

To check if both golden rectangles have the same width and height, we can delegate to the equals method
of the Rectangle class as follows.2

7 super.equals(other)

Combining the two, we arrive at the following.

7 equal = super.equals(other) && this.getWeight() == other.getWeight();

Consider the following snippet of client code.

1 final int WIDTH = 3;
2 final int HEIGHT = 6;
3 final int WEIGHT = 80;
4 GoldenRectangle first = new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);
5 GoldenRectangle second = new GoldenRectangle(WIDTH, HEIGHT, 2 * WEIGHT);
6 output.println(first.equals(second));

Once we reach the end of line 5, memory can be depicted as follows.

2Note that super. is used to invoke a method of the superclass, whereas super(...) is used to invoke to a constructor of
the superclass.

116 Franck van Breugel and Hamzeh Roumani

...
100 Client.main invocation

3 WIDTH
6 HEIGHT
200 first
300 second

200 GoldenRectangle object
3 width
6 height
80 weight

300 GoldenRectangle object
3 width
6 height
160 weight

...

The invocation of the equals method in line 6 of the client code gives rise to the following invocation
block.

...
600 equals invocation

200 this
300 object

other
...

The invocation block contains the parameters this and object and the local variable other.
Now, let us consider the execution of the body of the equals method. Since object is different from

null and both this and object refer to a GoldenRectangle object, line 6 and 7 of the equals
method are executed. In line 6, the local variable other is initialized.

...
600 equals invocation

200 this
300 object
300 other

...

In line 7, the equals method of the superclass is invoked. This leads to the following invocation block.

March 26, 2015 117

...
700 super.equals invocation

200 this
300 object

other
...

Again, the invocation block contains the parameters this and object and the local variable other.
Note that the parameter this is implicit in the invocation super.equals(other). The equals
method of the Rectangle class is invoked on the same object on which the equals method of the
ColouredRectangle class is invoked.3

Let us consider the execution of the body of the equals method of the Rectangle class. Recall that
we implemented the equals method in the Rectangle class as follows.

1 public boolean equals(Object object)
2 {
3 boolean equal;
4 if (object != null && this.getClass() == object.getClass())
5 {
6 Rectangle other = (Rectangle) object;
7 equal = (this.getWidth() == other.getWidth()) &&
8 (this.getHeight() == other.getHeight());
9 }

10 else
11 {
12 equal = false;
13 }
14 return equal;
15 }

Since object is different from null and both this and object refer to a GoldenRectangle object,
line 6 and 7 of the equals method are executed. In line 6, the local variable other is initialized to (the
object at address) 300. In line 7, the width and height of this object, that is, the object at address 200, and
of the other object, that is, the object at address 300, are compared.

In the next fragment of client code we compare a rectangle with a golden rectangle. Consider the
following snippet of client code.

1 final int WIDTH = 3;
2 final int HEIGHT = 6;
3 final int WEIGHT = 80;
4 GoldenRectangle first = new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);
5 Rectangle second = new Rectangle(WIDTH, HEIGHT);
6 output.println(first.equals(second));

3One may think of super.equals(other) as this.super.equals(other) where super.equals denotes the
equals method of the superclass. Note, however, that this.super.equals(other) is not valid Java syntax.

118 Franck van Breugel and Hamzeh Roumani

7 output.println(second.equals(first));

Neither first is equal to second, nor second is equal to first, since first and second are
instances of different classes and, hence, their Class objects (returned by the accessor getClass) are
different. We leave it to the interested reader to verify that the equalsmethod satisfies the usual properties.
We will come back to the equals method and its properties in Section 6.8.

The hashCode Method

The hashCodemethod returns an integer. This integer can be thought of as an abstraction of the state of the
object. As a consequence, the value returned by the hashCode method is usually defined in terms of the
values of the attributes of the class and its superclasses. For our GoldenRectangle class, the attributes
width, height and weight and their values make up the state. The hashCodemethod of the superclass
Rectangle already takes the attributes width and height into account. In the hashCode method of
the GoldenRectangle class, we combine the result of the hashCode method of the Rectangle class
and the weight attribute. The two integers can be combined in many ways. In superclass Rectangle we
simply add the width and the height. Here we combine them as follows.4

1 public int hashCode()
2 {
3 final int BASE = 37;
4 return super.hashCode() + BASE * this.getWeight();
5 }

Recall that the hashCode method and the equals method are closely related. Since we override
the equals method and the hashCode method, we have to check if they satisfy the usual property: if
x.equals(y) returns true then x.hashCode() and y.hashCode() return the same integer for all x
and y different from null. We leave it to the interested reader to check that this is indeed the case.

The toString Method

The toString method returns a string representation of the golden rectangle. For example, the snippet of
client code

1 final int WIDTH = 3;
2 final int HEIGHT = 6;
3 final int WEIGHT = 80;
4 GoldenRectangle rectangle = new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);
5 output.println(rectangle);

produces the output
4Let b be a natural number. We call b the base. The polynomial hashcode of the integers 〈i0, . . . , in〉 is defined by

nX
k=0

ikbk = i0 + i1b + i2b
2 + · · ·+ inbn.

The base b is usually a prime number. The details are beyond the scope of this book.

March 26, 2015 119

GoldenRectangle of width 3 and height 6 and weight 80

Note that part of this string, namely Rectangle of width 3 and height 6, is the same as the
string representation returned by the toStringmethod of the Rectangle class for a rectangle of width 3
and height 6. Hence, we can delegate to the toString method of the superclass to obtain this part.
Therefore, we can implement the toString method as follows.

1 public String toString()
2 {
3 return "Golden" + super.toString() + " and weight " + this.getWeight();
4 }

The code of the GoldenRectangle class can be found by following this link.

6.4 The PricingException Class

Next we add the method

public double getPrice() throws PricingException

to our GoldenRectangle class. This method returns the price (in Canadian dollars) of the golden rectan-
gle. The price is based on the weight of the golden rectangle and the current gold price. The method throws
a PricingException if the gold price cannot be determined.

To determine the gold price, we utilize the method

public static double priceIn(String currencyCode)
throws MalformedURLException, IOException, IndexOutOfBoundsException

of the LondonGoldExchange class. The API of this class can be found by following this link. The
method returns the current price of one gram of gold in the given currency at the London Gold Exchange.
The currency code for Canadian dollar is CAD. The method may throw three different types of exceptions.
We refer the reader to the API of the LondonGoldExchange class for the conditions under which these
exceptions are thrown. Since we want to hide these details from the client of our getPrice method, we
introduce a new exception class, named PricingException which will be thrown whenever something
goes wrong when determining the gold price.

First, we will implement the getPricemethod. After that, we will implement the PricingException
class.

The price of the golden rectangle is simply the product of its weight and the price of one gram of gold.

1 return this.getWeight() * LondonGoldExchange.priceIn("CAD");

Note that we should not cache the price, because the gold price varies over time.
Whenever the priceIn method throws an exception, our getPrice method throws a Pricing-

Exception. This can be accomplished by catching the exceptions thrown by the priceIn method, and
throwing instead a PricingException. This leads to the following implementation.

http://www.cse.yorku.ca/~buildIt/code//5/GoldenRectangle.java.txt
http://www.cse.yorku.ca/~buildIt/api//5/LondonGoldExchange.api

120 Franck van Breugel and Hamzeh Roumani

1 public double getPrice() throws PricingException
2 {
3 try
4 {
5 return this.getWeight() * LondonGoldExchange.getPrice("CAD");
6 }
7 catch (MalformedURLException e)
8 {
9 throw new PricingException("The gold price could not be determined");

10 }
11 catch (IOException e)
12 {
13 throw new PricingException("The gold price could not be determined");
14 }
15 catch (IndexOutOfBoundsException e)
16 {
17 throw new PricingException("The gold price could not be determined");
18 }
19 }

The above code can be compacted by combining the three catch blocks into one as follows.

1 public double getPrice() throws PricingException
2 {
3 try
4 {
5 return this.getWeight() * LondonGoldExchange.getPrice("CAD");
6 }
7 catch (MalformedURLException | IOException | IndexOutOfBoundsException e)
8 {
9 throw new PricingException("The gold price could not be determined");

10 }
11 }

The getPricemethod throws a PricingException if the gold price cannot be determined. Rather
than throwing an instance of an already existing exception class, we decided to introduce a new exception
class, PricingException, and to throw an instance this new class. Introducing our own exception class
allows the client to easily detect that this exception is thrown by our getPrice method.

Next, we implement the PricingException class. Its API can be can be found at this link. A
PricingException is an exception and, hence, our class PricingException extends the class
Exception. This is reflected in the header of our class.

1 public class PricingException extends Exception

http://www.cse.yorku.ca/~buildIt/api//5/PricingException.api

March 26, 2015 121

Since the PricingException class extends the Exception class, it inherits all public non-static
methods of the Exception class and its superclasses Throwable and Object. For example, it inherits
the getMessage method of the Throwable class and the equals method of the Object class

Object
equals(Object) : boolean

Throwable
getMessage() : String

Exception

PricingException

Recall that not any object can be used in the throws statement; it has to be a Throwable.

6.4.1 The Attributes Section

A PricingException is just a special type of exception, but contains no additional information. There-
fore, we do not introduce any new attributes.

6.4.2 The Constructors Section

Recall that the private non-static attributes of the superclasses are part of the state. For example, the
Throwable class contains a private non-static attribute named detailMessage of type String. This
attribute contains the string which is returned by the getMessagemethod. Since our PricingException
class is a subclass of the Throwable class, the attribute detailMessage and its value are part of the
state of a PricingException object.

To initialize the attributes of the superclasses, such as detailMessage, we delegate to a constructor
of the superclass.

1 public PricingException(String message)
2 {
3 super(message);
4 }

Note that the Throwable class does not contain a mutator setMessage and, hence, the attribute detailMessage
can only be initialized by delegation to a constructor of the superclass Exception. That constructor of the

122 Franck van Breugel and Hamzeh Roumani

superclass Exception in turn delegates to a constructor of its superclass, Throwable. In that constructor
of the Throwable class the attribute detailMessage is initialized.

To implement the default constructor of our PricingException class, we simply delegate to the
default constructor of its superclass.

1 public PricingException()
2 {
3 super();
4 }

6.4.3 The Methods Section

Our PricingException class contains no new public methods. Hence, we do not have to implement
any. Note, however, that our class inherits methods from the classes Object and Throwable such as
equals and getMessage (the class Exception contains no new public methods either).

The code of the PricingException class can be found by following this link.

6.5 The ColouredRectangle Class

Next, we consider a different extension of the Rectangle class. This time we add some colour to the
rectangle. Its API can be can be found at this link. To reflect that our ColouredRectangle class
extends the Rectangle class, we use the following class header.

1 public class ColouredRectangle extends Rectangle

6.5.1 The Attributes Section

A ColouredRectangle is a Rectangle with some additional information, namely its colour. Based
on the signature of the three parameter constructor and the signature of the accessor getColour and the
return type of the mutator setColour, we decide to represent this additional information by means of the
attribute of type Color (the class Color is part of the java.awt package). We declare the corresponding
attribute as follows.

1 private Color colour;

The classes ColouredRectangle, Rectangle and Color are related as follows.

http://www.cse.yorku.ca/~buildIt/code//5/PricingException.java.txt
http://www.cse.yorku.ca/~buildIt/api//5/ColouredRectangle.api

March 26, 2015 123

Rectangle

ColorColouredRectangle
1

Note that this example combines inheritance and aggregation.

6.5.2 The Constructors Section

The API contains two constructors: a three parameter constructor and a two parameter constructor. Let us
first consider the three parameter constructor. Again, we delegate to the superclass to initialize its part of the
state.

1 public ColouredRectangle(int width, int height, Color colour)
2 {
3 super(width, height);
4 this.setColour(colour);
5 }

In the two parameter constructor, the width and height are set to the given width and height, and the
colour is set to be white. In this case we can delegate to the three parameter constructor as follows.

1 public ColouredRectangle(int width, int height)
2 {
3 this(width, height, Color.WHITE);
4 }

6.5.3 The Methods Section

Of the methods of the ColouredRectangle class, we only discuss the equals method. Two coloured
rectangles are the same if they not only have the same width and height, but also the same colour. To
compare the width and the height, we delegate to the equals method of the superclass. This leads to the
following implementation.

1 public boolean equals(Object object)
2 {
3 boolean equal;
4 if (object != null && this.getClass() == object.getClass())
5 {
6 ColouredRectangle other = (ColouredRectangle) object;

124 Franck van Breugel and Hamzeh Roumani

7 equal = super.equals(other) && this.getColour().equals(other.getColour());
8 }
9 else

10 {
11 equal = false;
12 }
13 return equal;
14 }

Note that we use the equals method of the Rectangle class (through inheritance) and the equals
method of the Color class (through aggregation).

The code of the ColouredRectangle class can be found by following this link.

6.6 Implementing Abstract Classes

Abstract classes are often introduced to avoid code duplication. For example, consider the classes Right-
RectangularPrism and RightTriangularPrism.

• •

•

~~~~~~~ •

~~~~~~~

• •

•

~~~~~~~ •

~~~~~~~

•

•

~~~~~~~ •

@@@@@@@

•

•

~~~~~~~ •

@@@@@@@

The base of a right rectangular prism is a rectangle and the base of a right triangular prism is a triangle. In
a right rectangular prism all angles are 90◦. In a right triangular prism, apart from the six angles of the two
triangles, all other angles are 90◦. Both a right rectangular prism and a right triangular prism have a height.
Hence, we may represent this information by the following attribute.

1 private int height;

Rather than duplicating this code in the RightRectangularPrism class and in the RightTriangular-
Prism class, we introduce a common superclass, named RightPrism, that contains the common code.
Its API can be can be found at this link.

To prevent the client from creating an instance of the RightPrism class, we declare the class to be
abstract.

1 public abstract class RightPrism

If the client were to attempt to create an instance of this abstract class

1 final int HEIGHT = 5;
2 RightPrism prism = new RightPrism(HEIGHT);

http://www.cse.yorku.ca/~buildIt/code//5/ColouredRectangle.java.txt
http://www.cse.yorku.ca/~buildIt/api//5/RightPrism.api

March 26, 2015 125

then a compile time error would occur

RightPrismClient.java:2: RightPrism is abstract; cannot be instantiated
RightPrism prism = new RightPrism(HEIGHT);

ˆ
1 error

The relationships between the classes RightPrism, RightRectangularPrism and Right-
TriangularPrism are depicted in the UML diagram below. Note that the name of an abstract class
in a UML diagram is typeset in italics.

RightPrism
height : int
equals(Object) : boolean
hashCode() : int
toString() : String

RightRectangularPrism RightTriangularPrism

As we already mentioned, the RightPrism class contains the above declaration of the attribute height.
The corresponding accessor and mutator are private.

Although the client cannot create an instance of the RightPrism class, we do add a constructor to the
class so that subclasses can delegate to it to initialize the height attribute.

1 public RightPrism(int height)
2 {
3 super();
4 this.setHeight(height);
5 }

Note that we delegate to the default constructor of the superclass, the Object class. If a constructor does
not explicitly invoke a superclass constructor, then the Java compiler automatically inserts super() and,
hence, super() can be left out in the above constructor.5

5If the Java compiler automatically inserts super() and the superclass does not have a default constructor, then a compile-
time error will occur.

126 Franck van Breugel and Hamzeh Roumani

The RightPrism class contains the methods equals, hashCode and toString which all depend
on the height attribute. For example, the equals method can be implemented as follows.

1 public boolean equals(Object object)
2 {
3 boolean equal;
4 if (object != null && this.getClass() == object.getClass())
5 {
6 RightPrism other = (RightPrism) object;
7 equal = this.getHeight() == other.getHeight();
8 }
9 else

10 {
11 equal = false;
12 }
13 return equal;
14 }

The code of the RightPrism class can be found by following this link.
Let us only have a look at the RightRectangularPrism class. Its API can be can be found at this

link. This class extends the abstract RightPrism class which is reflected in the class header.

1 public class RightRectangularPrism extends RightPrism

As a consequence, the RightRectangularPrism class inherits methods from the Object class, such
as getClass, and from the RightPrism class, namely equals, hashCode, and toString. Further-
more, the attribute height, although not inherited, is part of the state of a RightRectangularPrism
object.

Because a right rectangular prism can be represented by its width, height and depth, and since the height
is already represented in the superclass, we only need to introduce the following two attributes.

1 private int width;
2 private int depth;

The state of a RightRectangularPrism object, consisting of its width, height and depth, is
initialized as follows.

1 public RightRectangularPrism(int width, int height, int depth)
2 {
3 super(height);
4 this.setWidth(width);
5 this.setDepth(depth);
6 }

Note that we delegate to the constructor of the RightPrism class.
In the RightRectangularPrism class we override the methods equals, hashCode and toString.

For example, the equals method can be implemented as follows.

http://www.cse.yorku.ca/~buildIt/code//5/RightPrism.java.txt
http://www.cse.yorku.ca/~buildIt/api//5/RightRectangularPrism.api

March 26, 2015 127

1 public boolean equals(Object object)
2 {
3 boolean equal;
4 if (object != null && this.getClass() == object.getClass())
5 {
6 RightRectangularPrism other = (RightRectangularPrism) object;
7 equal = super.equals(other)
8 && this.getWidth() == other.getWidth()
9 && this.getDepth() == other.getDepth();

10 }
11 else
12 {
13 equal = false;
14 }
15 return equal;
16 }

Note that we delegate to the equals method of the RightPrism class.
The code of the RightRectangularPrism class can be found by following this link.

6.7 Implementing Interfaces

In Section 3.2.1, we have seen how to specify that our Rectangle class implements the Comparable
interface. As we have seen in the previous section, an abstract class may contain attributes, constructors and
methods. Those methods may either be abstract, in which case they do not contain a method body, or not. In
contrast, an interface does not contain any non-static attributes6 or constructors. Instead, it contains method
headers. For example, the Comparable interface can be defined as follows.

1 /**
2 This interface imposes a total ordering on the objects of each class
3 that implements it.
4

5 @param <T> the type of objects that this object may be compared to.
6 */
7 public interface Comparable<T>
8 {
9 /**

10 Compares this object with the specified object for order.
11

12 @param object the object to be compared.
13 @return a negative integer, zero, or a positive integer as this
14 object is less than, equal to, or greater than the specified object.

6An interface may contain attributes which are static and final.

http://www.cse.yorku.ca/~buildIt/code//5/RightRectangularPrism.java.txt

128 Franck van Breugel and Hamzeh Roumani

15 */
16 public int compareTo(T object);
17 }

Not that the Comparator interface is generic. The identifier T in the above interface is a type param-
eter. It specifies which type of object can be compared by a class that implements the interface. Since our
Rectangle class compares Rectangle objects, we can specify that as follows in the class header.

1 public class Rectangle implements Comparable<Rectangle>

6.8 Beyond the Basics

6.8.1 The getVolume Method

We want to add a getVolumemethod to the classes that represent right prisms such as RightRectangular-
Prism and RightTriangularPrism. Consider, for example, the RightRectangularPrism class.
In this case, its volume is defined as the product of its height, width and depth. However, in the Right-
RectangularPrism we cannot compute this product since the attribute height is not accessible, as is
reflected in the following object block.

...
100 RightRectangularPrism object

4 height
2 width
7 depth

...

Each right prism has a base area. However, the base area is computed differently for different types of
right prisms. For example, for a right rectangular prism its base area is the product of its width and depth.
Note that this product can be computed in the RightRectangularPrism class as follows.

1 public int getBaseArea()
2 {
3 return this.getWidth() * this.getDepth();
4 }

The facts that each right prism has a base area but that it cannot be computed in the RightPrism class,
can be reflected by adding the following abstract method to the RightPrism class.

1 public abstract int getBaseArea();

By introducing this method declaration, we enforce that each (non-abstract) subclass has to provide an
implementation of the getBaseArea method. If we were to extend the RightPrism class and not
implement the getBaseArea method, then we would get a compile time error such as

IncompleteRightPrism.java:1: IncompleteRightPrism is not abstract and

March 26, 2015 129

does not override abstract method getBaseArea() in RightPrism
public class IncompleteRightPrism extends RightPrism

ˆ
1 error

Given that we have an (abstract) getBaseArea method in the RightPrism class, we can now im-
plement the getVolume method in the RightPrism class as follows.

1 public int getVolume()
2 {
3 return this.getHeight() * this.getBaseArea();
4 }

All subclasses of the RightPrism class inherit this getVolume method. This is reflected in the
following UML diagram. Note that an abstract method in a UML diagram is typeset in italics.

RightPrism
getBaseArea() : int
getVolume() : int

RightRectangularPrism
getBaseArea() : int

RightTriangularPrism
getBaseArea() : int

Consider the following body of a main method.

1 final int WIDTH = 3;
2 final int HEIGHT = 4;
3 final int DEPTH = 7;
4 RightPrism prism = new RightRectangularPrism(WIDTH, HEIGHT, DEPTH);
5 int volume = prism.getVolume();

Recall that the assignment in line 4 is valid, since a RightRectangularPrism is a RightPrism.
Once the execution has reached the invocation of the getBaseArea method within the getVolume
method on line 5, memory can be depicted as follows.

130 Franck van Breugel and Hamzeh Roumani

...
100 main invocation

3 WIDTH
4 HEIGHT
7 DEPTH
200 prism

volume

200 RightRectangularPrism object
7 height
3 width
7 depth

300 getVolume invocation
200 this

400 getBaseArea invocation
200 this

...

From the above memory diagram we can conclude that the getBaseArea method is invoked on
the RightRectangularPrism object. Let us consider early and late binding to confirm that this is
indeed the case. When we compile the RightPrism class, the invocation this.getBaseArea()
in the body of the getVolume method is bound to the getBaseArea method of the RightPrism
class since the declared type of this is RightPrism. At run time, the getBaseArea method is in-
voked on an instance of a (non-abstract) subclass of the RightPrism class. As we already mentioned
above, this subclass has to implement the getBaseArea method. Hence, at run time the invocation
this.getBaseArea() in the body of the getVolume method is bound to the getBaseArea method
of that subclass of the RightPrism class. In the above example, this is the getBaseArea method of the
RightRectangularPrism class.

6.8.2 Preconditions

Recall that we implemented the scale method of the Rectangle class as follows.

1 /**
2 Scale this rectangle with the given factor.
3

4 @param factor scaling factor.
5 @pre. factor >= 0
6 */
7 public void scale(int factor)
8 {
9 this.width *= factor;

March 26, 2015 131

10 this.height *= factor;
11 }

The Factory class contains a method

public static Rectangle getInstance()

which returns a Rectangle with random width and height.
A client uses the above classes in an app as follows.

1 Rectangle rectangle = Factory.getInstance();
2 rectangle.scale(0);
3 output.println(rectangle);

When the client runs the app, it does not produce the expected output

Rectangle with width 0 and height 0

Instead, it produces, for example,

Rectangle with width 4 and height 7

After inspecting the API of our Rectangle class, the client blames us since the client has satisfied the
precondition of our scale method, yet our method does not return the expected string.

How is it possible that the scale method does not return the expected string? Are we to blame?
After inspecting our scale method, we are convinced that it is correct. Hence, we are not to blame.

However, the client is not to blame either. So, who is to blame?
The implementer of the Factory class also wrote the HiddenRectangle class. This class ex-

tends the Rectangle class and overrides the scale method. The precondition of the scale(factor)
method of the HiddenRectangle class is factor > 0 and the method does nothing in case the pre-
condition is not met (recall that as an implementer we can do whatever we want if the precondition is not
met).

The implementer of the Factory class implemented the getInstance method in such a way that
it returns a HiddenRectangle object which is-a Rectangle. As a consequence, at compile time,
the method call rectangle.scale(0) is bound to the scale method of our Rectangle class.
However, at run time, the method call rectangle.scale(0) is bound to the scale method of the
HiddenRectangle class. Hence, it does not set the width and height to zero.

Note that the precondition of the scale method in the HiddenRectangle class strengthens the
precondition of the scale method in the Rectangle class: factor > 0 is stronger than factor >=
0 since the former implies the latter. As a consequence, the Rectangle class guarantees that the scale
method works as expected if the argument 0 is provided, whereas the HiddenRectangle class does not.
However, a HiddenRectangle object is-a Rectangle and, hence, should behave like a Rectangle.
In particular, its scalemethod should work as expected if the argument 0 is provided. Therefore, we blame
the implementer of the HiddenRectangle class: the precondition of the scale method should not have
been strengthened.

In a subclass, we can weaken the precondition as is shown in the following alternative implementation
of the HiddenRectangle class.

132 Franck van Breugel and Hamzeh Roumani

1 public class HiddenRectangle extends Rectangle
2 {
3 /**
4 Scale this rectangle with the given factor.
5 If the factor is negative then its absolute value is used.
6

7 @param factor scaling factor.
8 @pre. true
9 */

10 public void scale(int factor)
11 {
12 super.scale(Math.abs(factor));
13 }
14 }

6.8.3 Postconditions

Similarly, it can be shown that the postcondition of a method cannot be weakened in a subclass. It can be
strengthened though.

6.8.4 Exceptions

From the API of the Rectangle class we can conclude that the scale method does not throw an excep-
tion. Hence, in the snippet

1 public static void main(String[] args)
2 {
3 Rectangle rectangle = Factory.getInstance();
4 final int FACTOR = 3;
5 rectangle.scale(FACTOR);
6 }

we do not need to enclose the scale invocation with a try block. As we have seen above, the getInstance
method may return an instance of a subclass of the Rectangle class. If the subclass overrides the scale
method and the getInstance method returns an instance of the subclass, then the overridden scale
method is invoked in line 5. As a consequence, the overridden scale method cannot throw an exception
either.

If we were to override the scalemethod in the HiddenRectangle class and throw a Rectangle-
Exception if the argument of the scale method were negative and we were to compile the Hidden-
Rectangle class, then we would get the following error message.

HiddenRectangle.java:9: scale(int) in HiddenRectangle cannot
override scale(int) in Rectangle;
overridden method does not throw RectangleException

March 26, 2015 133

public void scale(int factor) throws RectangleException
ˆ

1 error

In summary, when we override a method, we cannot throw any exception that is not thrown by the
method in the super class.

As we have seen, the getPrice method of the GoldenRectangle class may throw an exception of
type PricingException. If we override the getPricemethod in a subclass of the GoldenRectangle
class, then we can throw an exception provided that it is an instance of PricingException or one of its
subclasses.

6.8.5 Final Methods and Final Classes

As we have seen in the previous three sections, if a method is not properly overridden in a subclass (by
strengthening the precondition, weakening the postcondition, throwing an exception, etc), we may get unex-
pected results even if that subclass is not explicitly mentioned in the code. To prevent others from overriding
our method, we can declare the method to be final. For example, if we do not want the scale method to be
overridden, then we declare it to be final as follows.

1 public final void scale(int factor}

If others were to attempt to override our scale method in their HiddenRectangle class, then they
would get a compile time error:

HiddenRectangle.java:18: error: scale(int) in HiddenRectangle
cannot override scale(int) in Rectangle

public void scale(int factor)
ˆ

overridden method is final
1 error

Note that final methods are inherited by their subclasses. We can also declare a class final. In that case,
none of the methods can be overridden. For example, we can declare our Rectangle class to be final as
follows.

1 public final class Rectangle

6.8.6 The equals Method Revisited

In our implementation of the equals method, we use the getClass method to check if the two objects
are of the same type. As a consequence, objects that are instances of different classes can never be equal.
Can instanceof be used instead of getClass? Assume we use

1 if (object != null && object instanceof ColouredRectangle)

instead of

134 Franck van Breugel and Hamzeh Roumani

1 if (object != null && this.getClass() == object.getClass())

in the equals method of the ColouredRectangle class. The equals method of the Rectangle
class can be modified similarly. Now consider the following snippet of client code.

1 final int WIDTH = 3;
2 final int HEIGHT = 6;
3 ColouredRectangle first = new ColouredRectangle(WIDTH, HEIGHT, Color.RED);
4 Rectangle second = new Rectangle(WIDTH, HEIGHT);
5 output.println(first.equals(second));
6 output.println(second.equals(first));

On the one hand, because second is not an instance of ColouredRectangle, the invocation first.equals(second)
returns false. On the other hand, since first instanceof Rectangle returns true and first and
second have the same width and height, the invocation second.equals(first) returns true. Hence,
this implementation gives rise to an equals method that is not symmetric. Since symmetry is part of the
postcondition of the equals method of the Object class and, as we have seen above, the postcondition
cannot be weakened, the equals method of the ColouredRectangle class should be symmetric as
well. Since the implementation of the equals method using instanceof weakens the postcondition, it
is incorrect.

6.8.7 Substitution Principle

The substitution principle roughly tells us that if class C is a subclass of the class P then objects of type
P may be replaced with corresponding objects of type C without changing the behaviour of the code. For
example, consider the following code snippet.

1 Rectangle rectangle = new Rectangle(1, 2);
2 output.println(rectangle.getHeight());

If we replace the Rectangle object with a corresponding ColouredRectangle object, then we obtain

1 Rectangle rectangle = new ColouredRectangle(1, 2);
2 output.println(rectangle.getHeight());

Both snippets produce the same output.
Now, let us consider the following snippet.

1 Set<Rectangle> set = new HashSet<Rectangle>();
2 set.add(new Rectangle(1, 2));
3 set.add(new Rectangle(1, 2));
4 output.println(set.size());

Recall that a set does not contain duplicates. Hence, the above snippet produces 1 as its output. Next, we
replace the first Rectangle object with a corresponding ColouredRectangle object.

March 26, 2015 135

1 Set<Rectangle> set = new HashSet<Rectangle>();
2 set.add(new ColouredRectangle(1, 2));
3 set.add(new Rectangle(1, 2));
4 output.println(set.size());

Recall that our equals method returns false if the two objects are instances of different classes. The add
method of the HashSet class uses the equals method to decide whether to add an element to the set by
comparing the element with all elements of the set by means of the equals method. Since our equals
method considers the objects added in line 2 and 3 to be different, the snippet produces 2 as its output and,
hence, does not give rise to the same behaviour. Therefore, the substitution principle does not hold in this
case.

In conclusion, either we implement the equalsmethod incorrectly, as discussed in the previous section,
or we give up on the substitution principle in some cases, like the above example. Here, we have chosen for
the second alternative.

6.8.8 Threads

In Section 4.5.1, we already briefly discussed the execution of multiple run methods at the same time.
Each run method is executed by a so-called thread. Such a tread is an instance of the class Thread, which
is part of the package java.lang. The two most important methods in the Thread class are run and
start. The run method contains the code to be executed by the thread. By default, the run method has
an empty body, that is, the body of the run method of the Thread class is empty. To obtain a thread with
interesting behaviour, we need to extend the Thread class and override its run method. We will show an
example of such a run method below.

The start method of the Thread class causes the tread to start its execution. As a result, the Java
virtual machine invokes the run method of the thread. We do not override the start method in any
subclass of the Thread class.

136 Franck van Breugel and Hamzeh Roumani

Object

Thread
getName() : String
run()
start()

Printer
run()

Let us develop the class Printer that extends the class Thread. A Printer object prints its name
indefinitely. Since the Thread class already contains an attribute name, we do not need to introduce such
an attribute in the Printer class. Hence, in the constructor of the Printer class, we delegate to the
constructor of the super class to initialize the attribute name.

1 public Printer(String name)
2 {
3 super(name);
4 }

The run method prints the name of the thread continuously as follows.

1 public void run()
2 {
3 while (true)
4 {
5 System.out.print(this.getName());
6 }
7 }

Putting it all together, we obtain the following class.

1 public class Printer extends Thread
2 {
3 /**
4 Initializes this printer with the given name.
5

March 26, 2015 137

6 @param name name of this printer.
7 */
8 public Printer(String name)
9 {

10 super(name);
11 }
12

13 /**
14 Continuously prints the number of this printer.
15 */
16 public void run()
17 {
18 while (true)
19 {
20 System.out.print(this.getName());
21 }
22 }
23 }

Next, we develop an application that creates two Printer objects, one named ”1” and the other named
”2” and starts the execution of both threads. The main method of such an application contains the following
code.

1 Printer one = new Printer("1");
2 Printer two = new Printer("2");
3 one.start();
4 two.start();

Running the application produces output that starts with something like the following.

222222222112222222222222222221111111112222222211221111112222222
222111111122222222222222221122222222222211111122111111122111111
111111111122111111221111111221111112222221111122111111111112211
111111111122111111122111111222222111112221111111221111112222222
222222222222222222221111111222222222222211111122222222221111122
111111221122222222222222222222222222222222221122222222111111221
111111111122222222222221111122222222111111221111111111122222222
222222222222222222111111222222222222221111122222222222222111...

Note that the output consists of an arbitrary interleaving of ones and twos.

138 Franck van Breugel and Hamzeh Roumani

Chapter 7

Implementing Graphical User Interfaces

7.1 Introduction

To see aggregation and inheritance in action, we implement a graphical user interface (GUI for short). This
chapter is not about GUIs, but we do introduce some of the concepts that play a role in the implementation
of GUIs. The focus of this chapter is aggregation and inheritance.

To implement a GUI, we exploit the model-view-controller (MVC) design pattern. This pattern decou-
ples the data, the graphical representation of the data, and the interactions of the client with the data. More
precisely, the MVC pattern is based on the following three elements.

• The model represents the data and provides ways to manipulate the data.

• The view provides a graphical representation of the model.

• The controller translates the client’s interactions with the view into actions that manipulate the view
and the model. These interactions can be menu selections, button clicks, etc.

A GUI may have multiple models, views and controllers. For simplicity, we restrict ourselves to GUIs
with a single model, view and controller. MVC can be implemented in different ways. Here we just show
one possibility.

In our implementation, we introduce the classes Model, View and Controller. Furthermore, we
develop an app, named Main, which is launched by the client to run the GUI.

The client launches the app Main. The app creates a Model a View, and a Controller. The
interactions of the client with the GUI via the View are handled by the Controller. The Controller
subsequently updates the Model and the View.

139

140 Franck van Breugel and Hamzeh Roumani

Client

Main

Model

View

Controller

Since the Controller updates the Model and the View, it needs access to these objects. As a
consequence, we will design the Controller class in such a way that it has a Model and it also has a
View.

A GUI usually consists of a window with a title and a border. Furthermore, the window may contain
components such as a menu bar, buttons, etc. A screenshot of the GUI we will develop can be found below.

By extending the JFrame class, which is part of the package javax.swing, our View class inherits
more than three hundred methods from JFrame and its superclasses and more than one hundred attributes

March 26, 2015 141

of JFrame and its superclasses are part of the state of a View.

JFrame

View Controller Model

Main

1 1

We will see more examples of aggregation and inheritance when we implement the classes Model,
View and Controller.

7.2 Dynamic Menu

We start with a rather simple GUI. The view consists of a menu bar. The menu bar has a single menu. The
items of the menu are ordered in such a way that the most selected item is at the top of the menu. As a
consequence, the order of the items may change as items are selected by the client. Assume that initially,
when no items have been selected yet, the items are ordered as follows.

After the client has selected the Print item, the items are ordered as follows.

142 Franck van Breugel and Hamzeh Roumani

Below, we discuss the Model, View, and Controller classes and the Main app.

7.2.1 The Model Class

The model contains the data of the GUI. In this case, we need to keep track of the order of the items of the
menu. Furthermore, we provide the Controller with the method

public void select(String text)

to update the model when the item with the given text has been selected by the client. The method

public List<String> getTexts()

provides the Controller with the list of texts of the items of the menu. The complete API of the Model
class can be found following this link.

The Attributes Section

To keep track of the order of the items of the menu, we need to record how often each item has been selected.
This information can be represented in different ways. We introduce a class ItemText that contains the
text of an item and the number of times that item has been selected. In our Model class, we introduce the
following attribute.

1 private List<ItemText> itemTexts;

As class invariant, we introduce the following.

1 //@ invariant this.itemTexts != null

Before discussing the remainder of our Model class, let us first have a look at the ItemText class.

http://www.cse.yorku.ca/~buildIt/api//6/Model.api

March 26, 2015 143

The ItemText Class

The ItemText class contains the text of an item together with the number of times that item has been
selected. This information is captured by the attributes

1 private String text;
2 private int count;
3 //@ invariant this.text != null && this.count >= 0

We include private accessors and mutators for both attributes.
Whenever we initialize an ItemText object, we provide the text as an argument and we set the counter

to zero.

1 public ItemText(String text)
2 {
3 this.setText(text);
4 this.setCount(0);
5 }

We introduce a method to increment the counter, which reflects that the client selected the item.

1 public void increment()
2 {
3 this.setCount(this.getCount() + 1);
4 }

Recall that our Model class contains an attribute of type List<ItemText>. Since we want the order
of the items of the menu from most selected to least selected, it is convenient to be able to sort the list.
As we have already seen in Section 3.2.4, this can be accomplished by ensuring that our ItemText class
implements the Comparable interface. Hence, we modify the class header as follows.

1 public class ItemText implements Comparable<ItemText>

Furthermore, we have to add an implementation of the method

public int compareTo(ItemText other)

Recall that the compareTo method returns a negative (positive) integer if this ItemText object is
smaller (larger) than the other ItemText object. Hence, we implement the compareTo method as
follows.

1 public int compareTo(ItemText other)
2 {
3 return this.count - other.count;
4 }

Note that the compareTo method returns a negative (positive) integer if the count of this ItemText
object is smaller (larger) than the count of the other ItemText object.

144 Franck van Breugel and Hamzeh Roumani

Most APIs ensure that x.compareTo(y) returns 0 if and only if x.equal(y) returns true. In this
setting, this amounts to two ItemText objects being the same if their counters are the same. Hence, we
implement the equals method as follows.

1 public boolean equals(Object object)
2 {
3 boolean equal;
4 if (object != null && this.getClass() != object)
5 {
6 ItemText other = (ItemText) object;
7 equal = this.getCount() == other.getCount();
8 }
9 else

10 {
11 equal = false;
12 }
13 return equal;
14 }

Since we have overridden the equals method of the Object class, we also override the hashCode
method of the Object class. Note that the equals method only considers the counter of a ItemText.
Hence, we restrict also our attention to the counter in our implementation of the hashCode method.

1 public int hashCode()
2 {
3 return this.getCount();
4 }

The code of the ItemText class can be found by following this link. Next, we continue the discussion
of our Model class.

The Constructors Section

The Model class only contains a one-parameter constructor. This constructor takes a list of strings as
its argument. These strings are the texts of the menu items. In the constructor, we initialize the attribute
itemTexts as follows.

1 public Model(List<String> texts)
2 {
3 List<ItemText> itemTexts = new ArrayList<ItemText>(texts.size());
4

5 for (String text : texts)
6 {
7 ItemText itemText = new ItemText(text);
8 itemTexts.add(itemText);
9 }

http://www.cse.yorku.ca/~buildIt/code//6/ItemText.java.txt

March 26, 2015 145

10

11 this.setItemTexts(itemTexts);
12 }

Note that initially all counters are zero.

The Methods Section

The accessor and mutator are private and are implemented in the usual way. We have left to implement the
select and getTexts methods.

In the select method, we have to increment the counter of the item that has been selected. The text of
the selected item is provided as an argument to the selectmethod. We find the corresponding ItemText
object by iterating through the list. Once found, we increment its counter.

1 public void select(String text)
2 {
3 for (ItemText itemText : this.getItemTexts())
4 {
5 if (itemText.getText().equals(text))
6 {
7 itemText.increment();
8 }
9 }

10 }

The method getTexts returns the texts of the menu items, ordered from most selected to least selected.
Recall that an ItemText object is smaller than another ItemText object if its count is smaller than
the count of the other object. Hence, if we sort a list of ItemText objects, the first object will have the
smallest count and the last one will have the largest count. Hence, after sorting the list of ItemText
objects, we have to return the texts of the ItemText objects in the reverse order. This can be accomplised
as follows.

1 public List<String> getTexts()
2 {
3 Collections.sort(this.getItemTexts());
4

5 List<String> texts = new ArrayList<String>(this.getItemTexts().size());
6

7 for (ItemText itemText : this.getItemTexts())
8 {
9 texts.add(0, itemText.getText());

10 }
11

12 return texts;
13 }

146 Franck van Breugel and Hamzeh Roumani

In line 3, we sort the list of ItemText objects. In line 5, we create an empty list of strings. Since we
know that the size of this list will be the same as the size of the list of ItemText objects, we set the
(initial) capacity of this list to the size of the list of ItemText objects. In line 7–10, we add the text of the
ItemText objects to this list. Note that the strings are added to the beginning of the list in line 9. As a
consequence, the texts of the ItemText objects occur in the reverse order.

In the following snippet of client code, we create a model for our GUI.

1 List<String> texts = new ArrayList<String>();
2 texts.add("New");
3 texts.add("Open");
4 texts.add("Save");
5 texts.add("Print");
6 texts.add("Exit");
7

8 Model model = new Model(texts);

Once we have implemented the Model class, we can test its constructor and methods in the usual way.
The code of the Model class can be found by following this link.

7.2.2 The View Class

The view provides the graphical representation of the GUI. In this case, the GUI consists of a window with
the title “Dynamic Menu” and a menu bar. The menu bar has a single menu, entitled “File”. This menu has
five items as shown below.

As we already mentioned in the introductory section of this chapter, the View extends JFrame. This
is reflected in the class header as follows.

1 public class View extends JFrame

http://www.cse.yorku.ca/~buildIt/code//6/Model.java.txt

March 26, 2015 147

The corresponding inheritance hierarchy can be depicted as follows.

Object

Component

Container

Window

Frame

JFrame

View

The Attributes Section

Our GUI has a title and a menu bar. However, the superclass Frame contains the attribute title of type
String and the superclass JFrame contains an attribute menuBar of type JMenuBar, the accessor
getJMenuBar and the mutator setJMenuBar.1 Hence, the attributes title and menuBar are already
part of the state of the View and the methods getJMenuBar and setJMenuBar are inherited by View.
Therefore, we do not need to introduce any additional attributes.

1To be precise, the JFrame class contains the attribute rootPane of type JRootPane and the JRootPane class contains
the attribute menuBar of type JMenuBar.

148 Franck van Breugel and Hamzeh Roumani

Frame
getTitle() : String
setTitle(String)

String

JFrame
getJMenuBar() : JMenuBar
setJMenuBar(JMenuBar)

JMenuBar

View

1

1

The Constructors Section

Since our View class extends the JFrame class, we start the constructor by delegating to a constructor of
the JFrame class. We use super("Dynamic Menu") to set the title of the frame to “Dynamic Menu.”
We have left to create the menu bar. A menu bar has a collection of menus and each menu has a collection
of items.

JMenuItem
JMenu

add(JMenuItem)
JMenuBar

add(JMenu)
* *

We create a menu bar as follows.

1 JMenuBar bar = new JMenuBar();

We use the mutator setJMenuBar to initialize the menu bar of the View. We create a menu entitled
“File” as follows.

1 JMenu menu = new JMenu("File");

The menu can be added to the menu bar as follows.

1 bar.add(menu);

We create an item entitled “New” as follows.

March 26, 2015 149

1 JMenuItem item = new JMenuItem("New");

The item can be added to the menu as follows.

1 menu.add(item);

Combining the above, we arrive at the following implementation of the constructor.

1 public View(List<String> texts)
2 {
3 super("Dynamic Menu");
4

5 JMenuBar bar = new JMenuBar();
6 this.setJMenuBar(bar);
7

8 JMenu menu = new JMenu("File");
9 bar.add(menu);

10

11 for (String text : texts)
12 {
13 JMenuItem item = new JMenuItem(text);
14 menu.add(item);
15 }
16 }

The Methods Section

The Controller will use the setTexts method to update the View. This method sets the texts of the
items to the first menu of the menu bar. These texts are taken from a list of strings, which is provided as an
argument to setTexts. The order of the strings in the list corresponds to the order of the items, that is,
the text of the first item is the first string of the list, etc.

1 public void setTexts(List<String> texts)
2 {
3 JMenu menu = this.getJMenuBar().getMenu(0);
4 for (int i = 0; i < menu.getItemCount(); i++)
5 {
6 JMenuItem item = menu.getItem(i);
7 String text = texts.get(i);
8 item.setText(text);
9 }

10 }

The following snippet of client code creates a Model and a View.

150 Franck van Breugel and Hamzeh Roumani

1 List<String> texts = new ArrayList<String>();
2 texts.add("New");
3 texts.add("Open");
4 texts.add("Save");
5 texts.add("Print");
6 texts.add("Exit");
7

8 Model model = new Model(texts);
9 View view = new View(texts);

10

11 final int WIDTH = 200;
12 final int HEIGHT = 50;
13 view.setSize(WIDTH, HEIGHT);
14 view.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
15 view.setVisible(true);

In line 13, the width and height (in the number of pixels) of the GUI is set using the method setSize,
which is inherited from the Window class. In line 14, the behaviour of the GUI is defined when the box with
the cross at the right upper corner is clicked. The method setDefaultCloseOperation is inherited
from the JFrame class. The constant WindowConstants.EXIT ON CLOSE is used to specify that the
GUI exits when the box with the cross at the right upper corner is clicked. The method setVisible,
inherited from the Window class, makes the GUI visible in line 15.

7.2.3 The Controller Class

As we already mentioned, the Controller has a Model and has a View. Therefore, we introduce the
following two attributes.

1 private Model model;
2 private View view;

We introduce the usual accessors and mutators for both attributes. While the accessors are private, the
mutators are public. The reason for this unusual combination will be discussed later.

We introduce the following constructor.

1 public Controller() {}

Note that the attributes are not initialized in the constructor. As a consequence, they are assigned the default
value, which is null. As we will see later, we will use the mutators to assign values to the attributes.

As we discussed before, the Controller translates the client’s interactions with the View into actions
that manipulate the View and the Model. For our GUI, the client can interact with the View by selecting
one of the items of the menu. To accomplish this, we will use event-driven programming. A detailed
discussion of event-driven programming is beyond the scope of this book. Instead we will briefly discuss
the key ideas and present a simple example.

In event-driven programming, we associate code snippets with events. Such an event can be selecting a
menu item, pressing a button, etc. Whenever an event occurs, the corresponding code snippet is executed.

March 26, 2015 151

In our case, whenever the client selects an item, where text is the text of that item, the following code
snippet should be executed by the Controller.

1 this.getModel().select(text);
2 List<String> texts = this.getModel().getTexts();
3 this.getView().setTexts(texts);

In line 1, the model is updated to reflect that the client selected the item with the given text. In line 2,
the list of texts of the menu items, sorted from most selected to least selected, is obtained from the model.
Finally, in line 3, the view is updated by setting the texts of the menu items.

Next, we address the following three questions.

• How is the code snippet added to the Controller class?

• How do we link (the source of) the event with the code snippet?

• How does the Controller get the data associated with the event (in our case, the text of the selected
menu item)?

The following class diagram provides an overview of the classes and methods that play a role.

ActionEvent
getActionCommand() : String

String

AbstractButton
addActionListener(ActionListener)
setActionCommand(String)

〈〈interface〉〉
ActionListener

actionPerformed(ActionEvent)
Controller

JMenuItem

*

1

1

152 Franck van Breugel and Hamzeh Roumani

Of the above classes we only implement the Controller class. The other classes are part of the Java
standard library. Let us next return to the above three questions.

The above code snippet is added to the Controller class in the form of a method called actionPerformed.
As can be seen in the above UML diagram, the actionPerformedmethod is part of the ActionListener
interface. Since it is the only method of this interface, and our Controller class provides an implementa-
tion of this method, the Controller class implements the ActionListener interface, as is represented
by the dashed arrow in the above UML diagram. This is reflected in the header of the Controller class
as follows.

1 public class Controller implements ActionListener

To the Controller class we add the following actionPerformed method.

1 public void actionPerformed(...)
2 {
3 String text = ...;
4 this.getModel().select(text);
5 List<String> texts = this.getModel().getTexts();
6 this.getView().setTexts(texts);
7 }

The missing details will be filled in later.
To link (the source of) the event with the code snippet, that we have placed in the actionPerformed

method in the Controller class, we register the Controller as a listener of the items of the first
menu of the menubar of the View. This is done by invoking the method addActionListener on the
JMenuItem objects. The method is inherited by the JMenuItem class from the AbstractButton
class, as can be seen in the above UML diagram. The addActionListener method takes an object of
type ActionListener as its argument. Since the Controller class implements the ActionListener
interface, we can provide a Controller object as the argument to the addActionListener method.
This can be accomplished by augmenting the constructor of the View class as follows.

1 public View(Controller controller, List<String> texts)
2 {
3 super("Dynamic Menu");
4

5 JMenuBar bar = new JMenuBar();
6 this.setJMenuBar(bar);
7

8 JMenu menu = new JMenu("File");
9 bar.add(menu);

10

11 for (String text : texts)
12 {
13 JMenuItem item = new JMenuItem(text);
14 menu.add(item);
15 item.addActionListener(controller);

March 26, 2015 153

16 }
17 }

Only line 15 is new. Since we need (a reference to) the Controller object, we provide it as an argument
to the constructor. As a result, line 1 has been modified. Note that we do not store the Controller object
as an attribute since we only need it in the constructor.

We have left to associate the text of the selected menu item with the event, which will be done in the con-
structor of the View class, and extract the text from the event, which will be done in the actionPerformed
method of the Controller class. We will discuss this in the following two paragraphs.

The JMenuItem class inherits the setActionCommandmethod from the AbstractButton class,
as can be seen in the above UML diagram. This method associates a string, which is provided as an argu-
ment, to events. In our case, whenever the client selects a menu item, an event with the text of that menu
item as its action command is created. This is done in line 16 of the following updated constructor of the
View class.

1 public View(Controller controller, List<String> texts)
2 {
3 super("Dynamic Menu");
4

5 JMenuBar bar = new JMenuBar();
6 this.setJMenuBar(bar);
7

8 JMenu menu = new JMenu("File");
9 bar.add(menu);

10

11 for (String text : texts)
12 {
13 JMenuItem item = new JMenuItem(text);
14 menu.add(item);
15 item.addActionListener(controller);
16 item.setActionCommand(text);
17 }
18 }

The actionPerformed method takes an ActionEvent object as its argument. This object repre-
sents the event that caused the method to be invoked. The object contains an action command. In our case,
this is the text of the menu item that the client selected. The accessor getActionCommand allows us to
extract the action command from the ActionEvent object. Hence, we can complete the Controller’s
actionPerformed method as follows.

1 public void actionPerformed(ActionEvent event)
2 {
3 String text = event.getActionCommand();
4 this.getModel().select(text);
5 List<String> texts = this.getModel().getTexts();
6 this.getView().setTexts(texts);

154 Franck van Breugel and Hamzeh Roumani

7 }

In general, whenever the client interacts with a component of the view, an ActionEvent object is
created to represent this event. This ActionEvent contains an action command. Subsequently, the Java
virtual machine ensures that the actionPerformedmethod of the listeners of the component are invoked
with the created ActionEvent object as its argument.

In our case, whenever the client selects a menu item, an ActionEvent object with the text of the se-
lected menu item as its action command is created. Subsequently, the actionPerformed method of the
Controller is invoked with the created ActionEvent object as its argument. In the actionPerformed
method, the text of the selected menu item is extracted from the ActionEvent object and the Model and
View are updated.

Next, we show how the actionPerformed method of the Controller class can be invoked
and, hence, be tested in an app. As we have seen above, the actionPerformed method takes an
ActionEvent as its single argument. To invoke the actionPerformed method, we need to create
an ActionEvent object. According to the API of the ActionEvent class, its simplest constructor
takes the following three arguments:

• source – the component that originated the event;

• id – an integer that identifies the event;

• command – a string that specifies the action command associated with the event.

Since we create the ActionEvent in the app, it has no originating component (such as a menu item).
However, we cannot use null for the source, because the constructor throws an exception in that case.
Hence, we provide a generic Object as the first argument. The API provides a number of constants that
can be used for the second argument. We use the constant ActionEvent.ACTION PERFORMED which
indicates that a meaningful action occurred. The third and final argument is the action command. For our
GUI, the action command is the text of one of the menu items. Hence, we can create an ActionEvent
object as follows.

1 new ActionEvent(new Object(), ActionEvent.ACTION_PERFORMED, title)

In the app below, we create a Model, View and Controller. On the one hand, the constructor of the
View class needs a reference to the Controller. On the other hand, the Controller has references
to the Model and View. We first create the Model and the Controller. Next, we create the View
by invoking its constructor with the Controller as an argument. Finally, we set the Controller’s
references to the Model and View by means of the mutators.

After having created the Model, View and Controller, we print the list of texts of the menu items,
randomly select a text, and print the selected text. Now we can invoke the actionPerformed method,
mimicking that the item with the given text has been selected. Finally, we print the list of texts so that we
can check if the invocation of the actionPerformed method has the desired effect.

1 List<String> texts = new ArrayList<String>();
2 texts.add("New");
3 texts.add("Open");
4 texts.add("Save");

March 26, 2015 155

5 texts.add("Print");
6 texts.add("Exit");
7

8 Model model = new Model(texts);
9 Controller controller = new Controller();

10 View view = new View(controller, texts);
11 controller.setModel(model);
12 controller.setView(view);
13

14 output.println(model.getTexts());
15

16 Random random = new Random();
17 String text = texts.get(random.nextInt(titles.size()));
18 output.println("Selected text: " + text);
19

20 ActionEvent event = new ActionEvent(new Object(), ActionEvent.ACTION_PERFORMED,
text);

21 controller.actionPerformed(event);
22

23 output.println(model.getTexts());

7.2.4 The Main App

We have already discussed all the ingredients of the Main app. Here, we simply show the body of its main
method.

1 List<String> texts = new ArrayList<String>();
2 texts.add("New");
3 texts.add("Open");
4 texts.add("Save");
5 texts.add("Print");
6 texts.add("Exit");
7

8 Model model = new Model(texts);
9 Controller controller = new Controller();

10 View view = new View(controller, texts);
11 controller.setModel(model);
12 controller.setView(view);
13

14 final int WIDTH = 200;
15 final int HEIGHT = 250;
16 view.setSize(WIDTH, HEIGHT);
17 view.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
18 view.setVisible(true);

156 Franck van Breugel and Hamzeh Roumani

The code of the Main app can be found by following this link.

7.3 Resetting the Counts

We add a button to our GUI. The button is entitled “Reset.”

When the client presses the button, the counts of all items of the menu are reset to zero. For example,
assume that the menu items are ordered as follows.

After the client has pressed the button, all counts are set to zero and the order of the items may have
changed as follows.

http://www.cse.yorku.ca/~buildIt/code//6/GUI.java.txt

March 26, 2015 157

Next, we discuss the modifications to the classes Model, View and Controller.

7.3.1 The Model Class

Recall that the Model has a list of ItemTexts. When the client presses the button, the Controller
should reset the count of each ItemText to zero. Hence, we add the method reset. To implement this
method, we delegate to the reset method of the ItemText class as follows.

1 public void reset()
2 {
3 for (ItemText itemText : this.getItemTexts())
4 {
5 itemText.reset();
6 }
7 }

To the ItemText class we add the following method.

1 public void reset()
2 {
3 this.setCount(0);
4 }

7.3.2 The View Class

The modified View has a button. This button can be represented by a JButton object. We may be tempted
to introduce an attribute of type JButton. However, consider the following class diagram.

158 Franck van Breugel and Hamzeh Roumani

Component
Container

add(Component)

Window

JFrame

View

*

Note that a Container has a collection of Components. This collection contains the components
(such as buttons and text fields) that are part of the container. Note that our View is a Container. As a
consequence, the collection of Components is part of the state of the View.

Also consider the following class diagram.

Component

Container

JComponent

AbstractButton
addActionListener(ActionListener)
setActionCommand(String)

JTextComponent

JButton JTextField

Note that a JButton is a Component and, hence, can be added to the above mentioned collection of
Components. Hence, rather than adding an attribute of type JButton to our View, we create a JButton
object and add it to the collection of Components, which is part of the state of our View, using the add
method inherited by our View class from the Container class.

March 26, 2015 159

As we did before for the menu items, we have to

• set the action command of the button, and

• add the Controller as an ActionListener of the button.

Recall that the action command is shared by the Component (the JButton in this case), which is
part of the View, and the ActionEvent, which is provided as an argument to the actionPerformed
method of the Controller. Hence, the action command is shared by the View and the Controller.
Rather than arbitrarily placing it in either the View class or the Controller class, we introduce a new
class ActionCommands that contains the action command.

1 public class ActionCommands
2 {
3 public static final String RESET = "Reset";
4 }

To the constructor of the View class we add the following.

1 JButton button = new JButton("Reset");
2 button.setActionCommand(ActionCommands.RESET);
3 button.addActionListener(controller);
4 this.add(button);

7.3.3 The Controller Class

As we already mentioned above, whenever the client presses the button, the Controller should invoke
the reset method on the Model. Hence, we modify the actionPerformed method to the following.

1 public void actionPerformed(ActionEvent event)
2 {
3 String action = event.getActionCommand();
4 if (action.equals(ActionCommands.RESET))
5 {
6 this.getModel().reset();
7 }
8 else
9 {

10 this.getModel().select(action);
11 }
12 List<String> texts = this.getModel().getTexts();
13 this.getView().setTexts(texts);
14 }

7.4 A Round Button

We replace the rectangular button to reset the menu items with a round button. Rather than developing a
RoundButton class from scratch, we extend the JButton class.

160 Franck van Breugel and Hamzeh Roumani

Object

Component

Container

JComponent

AbstractButton

JButton

RoundButton

Our RoundButton class inherits more than four hundred methods from JButton and its super-
classes and more than one hundred attributes of JButton and its superclasses are part of the state of a
RoundButton. To express that the RoundButton class is a subclass of the JButton class, we use the
following class header.

1 public class RoundButton extends JButton

In our RoundButton class, we only need to provide a constructor (since constructors are not inherited)
and override the methods paintBorder and contains. The former method paints the button’s border.
Since the border of a RoundButton is round, whereas the border of a JButton is rectangular, the method
needs to be overridden. The latter method defines the shape of the button. Because a RoundButton is
round, whereas a JButton is rectangular, also this method needs to be overridden.

The constructor of our RoundButton class takes the title of the button as its single argument. Since
the RoundButton class extends the JButton class, we first delegate to a constructor of the superclass
to initialize the state. Furthermore, we have to set the contentAreaFilled attribute to false so that the
area of the JButton, which is rectangular, is not filled.

1 public RoundButton(String title)

March 26, 2015 161

2 {
3 super(title);
4 this.setContentAreaFilled(false);
5 }

The method paintBorder paints the border of the button on the given Graphics object. This
Graphics object is passed to the method by the Java virtual machine. Since our RoundButton is a
JButton and a JButton has a width and a height, we take the diameter of the button to be the minimum
of that width and height.

To draw a circle, we use the method

public void drawOval(int x, int y, int width, int height)

where x and y are the x- and y-coordinate of the left upper corner of the oval to be drawn and width and
height are width and height of the oval to be drawn.

If the width is greater than the height, then the left upper corner has coordinates (width−diameter
2 , 0).

width−diameter
2

0

Otherwise, the left upper corner has coordinates (0, height−diameter
2). Both cases can be unified into one:

the left upper corner has coordinates (width−diameter
2 ,

height−diameter
2). Note that if the width is greater than

the height, then the diameter is equal to the height and, hence, height−diameter
2 equals 0.

Since we want to draw a circle, we use the diameter of the circle as the width and height of the oval.
Hence, the paintBorder method can be implemented as follows.

1 public void paintBorder(Graphics canvas)
2 {
3 int diameter = Math.min(this.getWidth(), this.getHeight());
4 canvas.drawOval((this.getWidth() - diameter) / 2, (this.getHeight() - diameter)

/ 2, diameter, diameter);
5 }

The method contains checks whether the point specified by the given x- and y-coordinate falls within
the circle that outlines the round button. The operating system and the Java virtual machine provide the x-
and y-coordinate to the contains method.

The point (x, y) is within the circle if and only if the distance from (x, y) to the centre of the circle is
smaller than or equals to the radius of the circle (the radius is half the diameter). Let (centerX, centerY) be

162 Franck van Breugel and Hamzeh Roumani

the coordinates of the centre of the circle.

��

x centerX
//

y

PPPPPPPPPPPPPPPPPP

centerY

The distance from (x, y) to (centerX, centerY) is√
(x− centerX)2 + (y− centerY)2

Hence, the contains method can be implemented as follows.

1 public boolean contains(int x, int y)
2 {
3 int diameter = Math.min(this.getWidth(), this.getHeight());
4 double centerX = this.getWidth() / 2.0;
5 double centerY = this.getHeight() / 2.0;
6 return Math.sqrt(Math.pow(centerX - x, 2.0) + Math.pow(centerY - y, 2.0)) <=

diameter / 2.0;
7 }

When we replace the JButton with a RoundButton in the View, we obrain the following.

Chapter 8

Recursion

8.1 Introduction

Let us implement the method

1 /**
2 * Prints the given number of *s.
3 *
4 * @param number of *s to be printed.
5 * @pre. n >= 0
6 */
7 public static void stars(int n)

of the class Print. An obvious way to implement this method is the following.

1 public static void stars(int n)
2 {
3 for (int i = 0; i < n; i++)
4 {
5 System.out.print(’*’);
6 }
7 }

However, there are other ways to implement this method. Obviously, if n is zero, then we do not have to
print anything at all. Otherwise, we have to print at least one *. This leads us to the following skeleton.

1 public static void stars(int n)
2 {
3 if (n == 0)
4 {
5 // do nothing
6 }
7 else
8 {

163

164 Franck van Breugel and Hamzeh Roumani

9 System.out.print(’*’);
10

11 }
12 }

What remains to be done at line 10 is printing n− 1 *s. In order to accomplish that, we can delegate to the
stars method:

10 Print.stars(n - 1);

Note that, since we invoke the stars method, we are a client (with respect to that method) and therefore
we have to make sure that its precondition is satisfied. If we reach line 10, then we have that n > 0 and,
hence, n− 1 ≥ 0. So the precondition of stars is indeed satisfied at line 10.

Note that the stars method is invoked within the body of the stars method. This makes it a so-
called recursive method. The invocations of the method within itself are known as recursive invocations.
For example, the invocation Print.stars(n - 1) on line 10 is a recursive invocation.

Within the body of a recursive method we find one or more base cases and one or more recursive cases.
In a base case, there is no need to delegate to the method itself, whereas a recursive case contains one or
more recursive invocations. The above recursive method stars has a single base case, namely when n is
zero. In that case, line 5 is executed. The method also has a single recursive case, namely when n is greater
than zero. In that case, line 9 and 10 are executed.

The method starsAndPlusses prints a number of *s —this number is given as an argument—
followed by the same number of +s.

1 /**
2 * Prints the given number of *s followed by the given number of +s.
3 *
4 * @param the number of *s and +s to be printed.
5 * @pre. n >= 0
6 */
7 public static void starsAndPlusses(int n)

When implementing a method recursively, we first determine base cases, that is, those cases in which we do
not need to delegate to the method itself. If n is zero, we do not have to do anything. This is an example of
a base case. Now assume that n is greater than zero. In that case we have to print the following.

n︷ ︸︸ ︷∗ ∗ · · · ∗︸ ︷︷ ︸
n−1

n︷ ︸︸ ︷
+ · · ·+︸ ︷︷ ︸

n−1

+

Note that the substring starting from the second * and ending with the one but last + can be printed by
delegating to Print.starsAndPlusses(n - 1). Hence, to print n *s followed by n +s we can

1. print a *,

2. print n− 1 *s followed by n− 1 +s by delegating to Print.starsAndPlusses(n - 1), and

3. print a +.

March 26, 2015 165

Combining the above leads us to the following.

1 public static void starsAndPlusses(int n)
2 {
3 if (n == 0)
4 {
5 // do nothing
6 }
7 else
8 {
9 System.out.print(’*’);

10 Print.starsAndPlusses(n - 1);
11 System.out.print(’+’);
12 }
13 }

As in the previous example, we have to make sure that the precondition of the method starsAndPlusses
is satisfied when we invoke it in line 10. If we reach line 10, then we have that n> 0 and, hence, n− 1 ≥ 0.
So the precondition is satisfied. The method has a single base case. In that case line 5 is executed. The
method also has a single recursive case. In that case line 9–11 are executed.

To simplify matters a little, all methods in this chapter are static. Note, however, that recursion can also
be used to implement non-static methods.

In the remainder of this chapter, we will provide numerous examples of recursive methods. We will start
with simple examples, such as the stars method presented above, to illustrate recursion. To implement
these methods, using iteration, that is, using for-, while- and do-loops, may be simpler than using recursion.
However, when we come to more intricate examples, the strength of recursion will become apparent.1

8.2 Proving Correctness and Termination

First, we present a strategy to prove recursive methods correct and a technique to prove that recursive
methods terminate. Subsequently, we apply these to prove the correctness and termination of the recursive
methods introduced in the previous section.

The correctness proof of a recursive method is split into two parts.

• For each base case, we prove that it is correct.

• For each recursive case, we assume that the recursive invocations are correct and we prove under that
assumption that the recursive case is correct as well.

The termination proof of a recursive method consists of two steps.

1If a method can be implemented using recursion, then it can also be implemented using iteration. Conversely, if a method can
be implemented using iteration, then it can also be implemented using recursion. So, what should we use, recursion or iteration?
Generally, we choose the technique that gives rise to the simplest code. We will violate this guideline at the beginning of this
chapter, since we want to illustrate recursion by means of simple examples and we are not aware of any simple examples for which
recursion gives rise to simpler code than iteration.

166 Franck van Breugel and Hamzeh Roumani

1. We define the size of each invocation of the method, also known as the variant expression. The size
has to be a natural number (that is, a non-negative integer).

2. We prove that each recursive invocation has a smaller size than the original invocation.

Our strategy to prove correctness can only be used in combination with a proof of termination using the
above proof technique.2

The method stars of the class Print prints a number of *s.

1 /**
2 * Prints the given number of *s.
3 *
4 * @param the number of *s to be printed.
5 * @pre. n >= 0
6 */
7 public static void stars(int n)
8 {
9 if (n == 0)

10 {
11 // do nothing
12 }
13 else
14 {
15 System.out.print(’*’);
16 Print.stars(n - 1);
17 }
18 }

Let us first prove the method correct.

• In the base case (line 11), when n equals zero, we do nothing, which is equivalent to printing zero *s.

• Consider the recursive case (line 15 and 16). Assume that the recursive invocation Print.stars(n
- 1) is correct, that is, it prints n - 1 *s. Then the recursive case (line 15 and 16) prints n *s.

∗︸︷︷︸
line 15

n−1︷ ︸︸ ︷∗ · · · ∗︸ ︷︷ ︸
line 16

Next, let us prove termination.

1. We define the size of the invocation Print.stars(n) by

size(Print.stars(n)) = n.

2Our correctness proof and our termination proof can be combined into a proof that

for each invocation of the method, the invocation is correct and terminates

March 26, 2015 167

From the precondition we can conclude that the size of an invocation is a natural number.

2. The size of the recursive invocation Print.stars(n - 1) is n− 1, which is smaller than n, the
size of the original invocation Print.stars(n).

The method starsAndPlusses prints a number of *s followed by the same number of +s.

1 /**
2 * Prints the given number of *s followed by the given number of +s.
3 *
4 * @param the number of *s and +s to be printed.
5 * @pre. n >= 0
6 */
7 public static void starsAndPlusses(int n)
8 {
9 if (n == 0)

10 {
11 // do nothing
12 }
13 else
14 {
15 System.out.print(’*’);
16 Print.starsAndPlusses(n - 1);
17 System.out.print(’+’);
18 }
19 }

Again, we first prove the correctness of the recursive method.

• In the base case (line 11), when n equals zero, we do nothing, which is equivalent to printing zero *s
followed by zero +s.

• Consider the recursive case (line 15–17). Assume that the recursive invocation Print.starsAndPlusses(n
- 1) is correct, that is, it prints n - 1 *s followed by n - 1 +s. Then the recursive case (line 15–
17) prints n *s followed by n +s.

∗︸︷︷︸
line 15

n−1︷ ︸︸ ︷∗ · · · ∗
n−1︷ ︸︸ ︷

+ · · ·+︸ ︷︷ ︸
line 16

+︸︷︷︸
line 17

Termination of this method can be proved in the same way as the previous method.

8.3 Recursive Methods that Return an Integer

Recall that the factorial of n, often denoted as n!, is defined as

n! =
n∏

i=1

i = 1× 2× · · · (n− 1)× n.

by strong induction on the size of the invocation.

168 Franck van Breugel and Hamzeh Roumani

Let us implement the method

1 /**
2 * Returns the factorial of the given number.
3 *
4 * @param a number whose factorial is returned.
5 * @pre. n >= 1
6 * @return n!
7 */
8 public static long factorial(int n)

of the Math class using recursion. Note that, in contrast to all recursive methods that we have developed so
far, this method returns a result.

If n is one, then n! is one. This is a base case. Otherwise, n is greater than one. In that case,

n! = 1× 2× · · · × (n− 1)× n = (n− 1)!× n.
To compute (n− 1)! we can delegate to the method itself using Math.factorial(n - 1). Hence, this
is a recursive case. Combining the above, we arrive at the following recursive method.

1 public static long factorial(int n)
2 {
3 int factorial;
4 if (n == 1)
5 {
6 factorial = 1;
7 }
8 else
9 {

10 factorial = Math.factorial(n - 1) * n;
11 }
12 return factorial;
13 }

Let us prove the method factorial correct.

• In the base case (line 6), when n is one, we assign the variable factorial the value of n! and,
hence, this case is correct.

• Consider the recursive case (line 10). In this case n ≥ 2 and, hence, n − 1 ≥ 1 and, therefore, the
precondition for the invocation Math.factorial(n - 1) is satisfied. Assume that the recursive
invocation Math.factorial(n - 1) is correct, that is, it returns (n − 1)!. Then we assign
(n− 1)!× n = n! to the variable factorial in line 10. Hence, this case is correct as well.

Next, we show that the method terminates.

1. We define the size of the invocation Math.factorial(n) by

size(Math.factorial(n)) = n.

March 26, 2015 169

From the precondition we can conclude that the size of an invocation is a natural number.

2. The size of the recursive invocation Math.factorial(n - 1) is n− 1, which is smaller than n,
the size of the original invocation Math.factorial(n).

In Section ??, we implemented the pow method as follows.

1 /**
2 * Returns the given base raised to the power of the given exponent.
3 *
4 * @param base the base.
5 * @param exponent the exponent.
6 * @pre. exponent >= 0
7 */
8 public static int pow(int base, int exponent)
9 {

10 int pow = 1;
11 for (int i = 0; i < exponent; i++)
12 {
13 pow = pow * base;
14 }
15 return pow;
16 }

The method can also be implemented recursively.

1 public static int pow(int base, int exponent)
2 {
3 int pow;
4 if (exponent == 0)
5 {
6 pow = 1;
7 }
8 else
9 {

10 pow = base * Recursive.pow(base, exponent - 1);
11 }
12 return pow;
13 }

Let us first convince ourselves that the above recursive method returns the desired result.

• In the base case (line 6), when exponent is zero, we set pow to one which is correct since base0 =
1.

• In the recursive case (line 10), the precondition for the invocation Recursive.pow(base, exponent
- 1) is satisfied since exponent>0. We assume that the recursive invocation Math.pow(base,

170 Franck van Breugel and Hamzeh Roumani

exponent - 1) is correct, that is, assume that it returns baseexponent−1. In this case, we set
pow to base × baseexponent−1 which equals baseexponent. Hence, this case is correct as
well.

Next, let us check that the above recursive method always terminates.

1. We define the size of the invocation Math.pow(base, exponent) by

size(Math.pow(base, exponent)) = exponent.

From the precondition we can derive that the size of an invocation is a natural number.

2. The size of the recursive invocation Math.pow(base, exponent - 1) is exponent - 1,
which is smaller than exponent, the size of the original invocation Math.pow(base, exponent).

8.4 Recursive Methods for Lists

The method contains of the class Collections checks if an element is part of a list.

1 /**
2 * Tests if the given list contains the given element.
3 *
4 * @param element the element.
5 * @pre. element != null
6 * @param list the list.
7 * @pre. list != null
8 * @return true if the given list contains the given element, false otherwise.
9 */

10 public static <T> boolean contains(T element, List<T> list)

Obviously, an empty list, that is, one of size zero, does not contain the given element. This is a base
case. If the first element of the list is the element for which we are looking, then we have found it right away.
This is a base case as well. Otherwise, the list is nonempty and the first element is not the one for which we
are looking. Hence, we have to look in the rest of the list for the element. This can be done be delegating
and, hence, this is a recursive case.

To obtain the rest of the list (without destroying the original list), we can make a shallow copy as follows.

List<T> rest = new ArrayList<T>(list.subList(1, list.size()));

The method subList returns a view of a portion of the list. In the above case, it returns a view of the
portion starting at index 1 and ending just before index list.size(), that is, all but the first element (the
element at index 0) of the list. We use the copy constructor of the ArrayList class to copy this portion.

We can implement the contains method as follows.

March 26, 2015 171

1 public static <T> boolean contains(T element, List<T> list)
2 {
3 boolean contains;
4 if (list.size() == 0)
5 {
6 contains = false;
7 }
8 else
9 {

10 if (element.equals(list.get(0))
11 {
12 contains = true;
13 }
14 else
15 {
16 List<T> rest = new ArrayList<T>(list.subList(1, list.size()));
17 contains = Collections.contains(element, rest);
18 }
19 }
20 return contains;
21 }

The correctness of the contains method can be proved as follows.

• In the first base case (line 6), list is empty. Obviously, an empty list does not contain element
and, hence, setting contains to false is correct.

• In the second base case (line 12), list is nonempty and the first element of list is equal to
element. In this case we have found the element and, hence, setting contains to true is cor-
rect.

• When we reach the recursive case (line 16–17), we have that element != null and rest !=
null and, hence, the precondition of contains is satisfied. Also, we know that list is nonempty
and the first element of list is not equal to element. We assume that the recursive invocation
Collections.contains(element, rest) is correct, that is, it returns whether element
is contained in rest.

[first,
rest︷︸︸︷· · ·]︸ ︷︷ ︸

list

Since the first element of list is not equal to element, list contains element if and only if
rest contains element. Therefore,

contains = Collections.contains(element, rest);

is correct.

172 Franck van Breugel and Hamzeh Roumani

We can prove that the contains method terminates as follows.

1. We define the size of the invocation Collections.contains(element, list) by

size(Collections.contains(element, list)) = list.size().

Obviously, list.size() is a natural number.

2. Since rest is obtained by removing the first element of list, rest.size() is smaller than
list.size(). Hence, the size of the recursive invocation Collections.contains(element,
rest) is smaller than the size of the original invocation Collections.contains(element,
list).

The method isConstant of the class Collections checks if a list is constant, that is, if all its
elements are equal.

1 /**
2 * Tests if the given list is constant, that is, if all elements are the same.
3 *
4 * @param list the list.
5 * @pre. list != null and list does not contain null
6 * @return true if the given list is constant, false otherwise.
7 */
8 public static <T> boolean isConstant(List<T> list)

If the list is empty, then all elements are equal and, hence, the list is constant. If the list contains a single
element, then the list is constant as well. Both are base cases. If the first and the second element are not
equal, then the list is not constant. This is yet another base case. Otherwise, the list contains at least two
elements and the first and second element are equal. In that case, the list is constant if and only if the sublist
starting with the second element is constant. The latter fact can be determined by invoking the method
recursively on the rest of the sublist. Therefore, the isConstant method can be implemented as follows.

1 public static <T> boolean isConstant(List<T> list)
2 {
3 boolean constant;
4 if (list.size() <= 1)
5 {
6 constant = true;
7 }
8 else
9 {

10 if (!list.get(0).equals(list.get(1)))
11 {
12 constant = false;
13 }
14 else

March 26, 2015 173

15 {
16 List<T> rest = new ArrayList<T>(list.subList(1, list.size()));
17 constant = Collections.isConstant(rest);
18 }
19 }
20 return constant;
21 }

Let us prove the isConstant method correct.

• In the first base case (line 6), the list is either empty or contains a single element. In both cases all
elements are equal and, hence, the assignment constant = true is correct.

• In the second base case (line 12), the first and second element are not equal and, therefore, the list is
not constant, so the assignment constant = false is correct.

• Let us consider the recursive case (line 16–17). We leave it to the reader to check that the precondition
of isConstant is satisfied at this point. Assume that the recursive call is correct, that is, it returns
whether rest is constant. If we reach the recursive case, we know that the list has at least two
elements and the first element is equal to the second element. Hence, list is constant only if rest
is constant. Therefore, the assignment constant = Collections.isConstant(rest) is
correct.

We can prove that the method isConstant terminates in the same way as we proved the termination
of the contains method.

The minimum method of the Collections class returns the minimum of a nonempty list of integers.

1 /**
2 * Returns the minimum element of the given list.
3 *
4 * @param list the list.
5 * @pre. list != null and list.size() > 0 and list does not contain null
6 * @return the minimum element of the given list.
7 */
8 public static int minimum(List<Integer> list)

If the list contains a single integer, then obviously that integer is the minimum. This is a base case.
Assume that the list contains more than one element. Then the minimum is the minimum of

• the first element,

• the minimum of the rest of the list.

The latter can be obtained by a recursive call.

1 public static int minimum(List<Integer> list)
2 {
3 int minimum;

174 Franck van Breugel and Hamzeh Roumani

4 if (list.size() == 1)
5 {
6 minimum = list.get(0);
7 }
8 else
9 {

10 List<Integer> rest = new ArrayList<Integer>(list.subList(1, list.size()));
11 minimum = Math.min(list.get(0), Collections.minimum(rest));
12 }
13 return minimum;
14 }

The correctness of the minimum method can be proved as follows.

• In the base case (line 6), the list has a single element, which is the minimum.

• Next, we consider the recursive case (line 10–11). Note that rest != null. Since list does
not contain null, rest does not either. If we reach line 10, list.size() is greater than one and,
hence, rest.size() is greater than zero. Therefore, precondition for the invocation of minimum
is satisfied. Assume that the recursive invocation Collections.minimum(rest) is correct, that
is, it returns the minimum of rest. As we already mentioned above, in this case the minimum of
list is the minimum of the first element and the minimum of the rest of the list.

The proof of termination is similar to the one presented above.
In all the recursive methods for lists presented above, the method is recursively invoked on a copy of the

list with the first element removed. Rather than removing the first element, we can also reduce the size of
the list in other ways. For example, we can split a list in two as follows.

int middle = list.size() / 2;
List<T> left = new ArrayList<T>(list.subList(0, middle));
List<T> right = new ArrayList<T>(list.subList(middle, list.size()));

As an example, let us consider the minimum method again. In the recursive case we can split list
into left and right. Since the minimum element of list is the minimum of

• the minimum element of left and

• the minimum element of right

we can implement the minimum method also as follows.

1 public static int minimum(List<Integer> list)
2 {
3 int minimum;
4 if (list.size() == 1)
5 {
6 minimum = list.get(0);

March 26, 2015 175

7 }
8 else
9 {

10 int middle = list.size() / 2;
11 List<Integer> left = new ArrayList<Integer>(list.subList(0, middle));
12 List<Integer> right = new ArrayList<Integer>(list.subList(middle, list.size()

));
13 minimum = Math.min(Collections.minimum(left), Collections.minimum(right));
14 }
15 return minimum;
16 }

To modify the above correctness proof, we only have to revisit the recursive case (line 10–13). Note
that, since list.size() is greater than one when we reach line 10, the lists left and right are
nonempty. This is needed to verify that the preconditions for Collections.minimum(left) and
Collections.minimum(right) are satisfied. The details are left to the reader. Now, we assume that
the recursive invocations Collections.minimum(left) and Collections.minimum(right)
are correct, that is, return the minimum element of the left and the right part of list, respectively. As we
already mentioned above, the minimum element of list is the minimum of the minimum element of left
and the minimum element of right. As a consequence, the assignment of line 13 is correct.

Termination can be proved as follows.

1. We define the size of the invocation minimum(list) by

size(minimum(list)) = list.size()

2. When we reach line 10 list.size() is greater than one. As a consequence, left.size()
and right.size() are smaller than list.size(). Hence, the size of the recursive invocations
Collections.minimum(left) and Collections.minimum(right) are smaller than the
size of the original invocation Collections.minimum(list).

176 Franck van Breugel and Hamzeh Roumani

Chapter 9

Arrays

9.1 Arrays

9.1.1 What is an Array?

To motivate why we might be interested in using arrays, let us implement an app that creates a collection of
doubles. We will keep track of the number of milliseconds it takes to create the collection. In the snippet
below we use a LinkedList to represent the collection.

1 output.print("Provide the size of the collection: ");
2 final int SIZE = input.nextInt();
3 long start = System.currentTimeMillis();
4 List<Double> collection = new LinkedList<Double>();
5 for (int i = 0; i < SIZE; i++)
6 {
7 collection.add(new Double(1.0));
8 }
9 output.println(System.currentTimeMillis() - start);

If we run the above snippet for different sizes of the collection, we get the following times (in milliseconds).
SIZE time

100000 28
1000000 267

10000000 13348
Next, we do the same but this time we exploit arrays. We only have to changes line 4 and 7 of the above

snippet. We replace them with the following.

4 double[] collection = new collection[SIZE];

7 collection[i] = 1.0;

We will discuss the above two lines in detail later in this section. For now, we are merely interested in the
output that the modified app produces.

177

178 Franck van Breugel and Hamzeh Roumani

SIZE time
100000 20

1000000 128
10000000 5035

Comparing the two tables, we can conclude that the app which uses the array takes less time than the
one which uses the LinkedList.

Arrays are objects, but of a special type. Like other objects, we declare arrays and we create them (but
in a special way). An array has a single attribute, which we will discuss later. In principle, we can invoke
methods on arrays but we hardly ever do. Arrays also have some special features that ordinary objects do
not possess.

As we have seen in the above example, we can exploit an array to implement a collection. We can
declare an array of doubles named collection as follows.

1 double[] collection;

The type of the variable collection is double[]. The [] denotes that we are dealing with an array.
The double denotes that the elements stored in the array are of type double. The type double is known
as the base type of the array.

To create an object of type double[], we use the keyword new. At the time of creation, we have to
fix the length of the array. For example,

1 collection = new double[SIZE];

creates an array of doubles of length SIZE (and assigns it to the variable collection).
The attribute length contains the length of the array. This attribute is final which reflects that the

length of an array is fixed. The snippet

1 output.println(collection.length);

prints the length of the array collection.
The elements of the array can be found in the so-called cells of the array. Each cell has an index. The

index of the first cell is 0. The second one has index 1, etcetera. The index of the last cell of the array
collection is SIZE− 1. Initially, each array cell contains the default value of the base type of the array.
Since the base type of the array collection is double and the default value for double is 0.0, each
cell of collection contains 0.0 when the array is created.

The elements of an array can be accessed via their indices. For example, to print the first element and
last element of the array collection we can use

1 output.println(collection[0]);
2 output.println(collection[SIZE - 1]);

If we provide an invalid index, that is, one that is smaller than 0 or one that is greater than or equal to the
length of the array, then an ArrayIndexOutOfBoundsException is thrown. For example,

1 output.println(collection[-1]);

and

March 26, 2015 179

1 output.println(collection[SIZE]);

both give rise to such an exception.
To change the content of an array cell, we can assign it a new value. For example,

1 collection[0] = 1.0;

assigns 1.0 to the first cell of the array collection. Also in this case an ArrayIndexOutOfBoundsException
is thrown if the used index is invalid.

In the above example, we have used an array the base type of which is a primitive type, namely double.
However, the base type of an array can also be non-primitive. For example, we can declare and create an
array of Doubles as follows.

1 Double[] collection = new Double[SIZE];

Initially, each cell of this array contains the default value of the type Double which is null.

9.1.2 Memory Diagrams

Recall that arrays are objects. As a consequence, in our memory diagrams each array will have its own
block. In that block we find its single attribute length and its value. Furthermore, the block also contains
the cells of the array and their values.

For example, if the execution reaches the end of line 4 of the array version of the code snippet of the
previous section and the user entered four, then memory can be depicted as follows.

...
100 Client.main invocation

SIZE 4
start 1225548517068

collection 300

300 double[] object
length 4

[0] 0.0
[1] 0.0
[2] 0.0
[3] 0.0

...

Let us consider another example.

1 output.print("Provide the size of the collection: ");
2 final int SIZE = input.nextInt();
3 Double[] collection = new Double[SIZE];
4 for (int i = 0; i < SIZE; i++)
5 {

180 Franck van Breugel and Hamzeh Roumani

6 collection[i] = new Double(1.0);
7 }

Once the execution reaches the end of line 6 for the second time, memory can be depicted as follows.

...
100 Client.main invocation

SIZE 4
collection 300

300 Double[] object
length 4

[0] 600
[1] 700
[2] null
[3] null

600 Double object
1.0

700 Double object
1.0

...

9.2 Implementing a List by means of an Array

9.2.1 Introduction

In this section we implement the List interface by means of an array. The API of the List interface can
be found at this link.

The List interface is generic. This is reflected by the type parameter T in List<T>. The type
parameter captures the type of the elements of the list. To use the List interface, the client has to provide
a non primitive type as argument. For example, List<Double> represents a list containing Double
objects.

Note that the List interface extends the Iterable interface. As a consequence, when we implement
the List interface we not only have to provide an implementation for each method specified in the List
interface, but also for the single method iterator specified in the Iterable interface.

Note also that our List interface is different from the interface java.util.List. To simplify mat-
ters, our List interface contains fewer methods and some of the methods are specified slightly differently.

We provide two implementations of the List interface: BoundedArrayList and UnboundedArrayList.
In the former implementation, the maximum size of the list is bound, whereas in the latter implementation
the list can grow unboundedly. Both classes are generic. The APIs of the classes can be found at this link
and this link.

Like we used a LinkedList in Section 9.1.1, we can use a BoundedArrayList as follows.

http://www.cse.yorku.ca/~buildIt/api//8/List.api/List.html
http://www.cse.yorku.ca/~buildIt/api//8/List.api/BoundedArrayList.html
http://www.cse.yorku.ca/~buildIt/api//8/List.api/UnboundedArrayList.html

March 26, 2015 181

1 output.print("Provide the size of the collection: ");
2 final int SIZE = input.nextInt();
3 long start = System.currentTimeMillis();
4 List<Double> collection = new BoundedArrayList<Double>(SIZE);
5 for (int i = 0; i < SIZE; i++)
6 {
7 collection.add(new Double(1.0));
8 }
9 output.println(System.currentTimeMillis() - start);

If we run the above snippet for different sizes of the collection, we get the following times (in millisec-
onds).

SIZE time
100000 23

1000000 131
10000000 5092

Note that the BoundedArrayList is more efficient than the LinkedList.

9.2.2 The Class Header

The class header is identical to the one found in the API.

1 public class BoundedArrayList<T> implements List<T>

The type parameter T captures the type of the elements of the list. The type parameter T can be used within
the body of the class as a non primitive type. For example, we can declare a variable named element of
type T as follows.

1 T element;

9.2.3 The Attributes Section

The API of the BoundedArrayList class contains a single public attribute named CAPACITY. As we
can see in the API, this attribute is static and it is a constant of type int. In the API, we can also find its
value, which is 100. Hence, we introduce the following declaration and initialization.

1 public static final int CAPACITY = 100;

To store the elements of the list, we introduce an array. The first element of the list is stored in the first
cell of the array, the second element of the list is stored in the second cell of the array, etcetera. The elements
of the list are of type T. Hence, it seems natural to introduce an array the base type of which is T. However,
Java does not allow for arrays the base type of which is a type parameter.1 Since each class extends the
Object class, each object is-an Object. Hence, an array of Objects can store elements of any type.
Therefore, we introduce the following array to store the elements of the list.

1The reasons why Java disallows such arrays is beyond the scope of these notes.

182 Franck van Breugel and Hamzeh Roumani

1 private Object[] elements;

If the list contains n elements, then these elements are stored in the cells with indices 0, . . . , n−1. The cells
with an index greater than or equal to n contain no element, that is, their values are null.

We also keep track of the size of the list by introducing the following attribute.

1 private int size;

To ensure that all the elements stored in the array are of type T, we will maintain the following class
invariant.

1 /*
2 * class invariant:
3 * this.size >= 0 &&
4 * this.size <= this.elements.length &&
5 * for all 0 <= i < this.size : this.elements[i] != null && this.elements[i]

instanceof T &&
6 * for all this.size <= i < this.elements.length : this.elements[i] == null
7 */

9.2.4 The Constructors Section

The API of the BoundedArrayList class contains three constructors. Both the default constructor and
the constructor that takes a capacity as its argument give rise to an empty list, that is, the size is zero and
all the cells of the array elements contain null. As we will see below, we can implement the former by
delegating to the latter. In the latter constructor, we set the size to zero and we create an array of Objects
of length capacity as follows.

1 public BoundedArrayList(int capacity)
2 {
3 this.size = 0;
4 this.elements = new Object[capacity];
5 }

Note that the cells of the array all contain null, since upon creation all cells of an array contain the default
value of the base type of the array and null is the default value of Object.

The default constructor can simply delegate to the above implemented constructor as follows.

1 public BoundedArrayList()
2 {
3 this(BoundedArrayList.CAPACITY);
4 }

Before implementing the copy constructor, let us consider the following snippet of client code.

March 26, 2015 183

1 final int MAX_SIZE = 4;
2 List<Double> list = new BoundedArrayList<Double>(MAX_SIZE);
3 list.add(new Double(0.0));
4 list.add(new Double(1.0));
5 List<Double> copy = new BoundedArrayList<Double>(list);

When the execution reaches the end of line 4, memory can be depicted as follows.

...
100 Client.main invocation

list 200
MAX SIZE 4

copy

200 BoundedArrayList<Double> object
size 2

elements 300

300 Object[] object
length 4

[0] 400
[1] 500
[2]
[3]

400 Double object
0.0

500 Double object
1.0

...

After the execution reaches the end of line 5, our memory diagram looks as follows.

184 Franck van Breugel and Hamzeh Roumani

...
100 Client.main invocation

list 200
MAX SIZE 4

copy 600

200 BoundedArrayList<Double> object
size 2

elements 300

300 Object[] object
length 4

[0] 400
[1] 500
[2]
[3]

400 Double object
0.0

500 Double object
1.0

600 BoundedArrayList<Double> object
size 2

elements 700

700 Object[] object
length 4

[0] 400
[1] 500
[2]
[3]

...

Note that the arrays at the addresses 300 and 700 contain the same Double objects, namely the ones at the
addresses 400 and 500. This implies that we have to create a new array in the copy constructor and copy the
content of the original array to the new one. Hence, we can implement the copy constructor as follows.

1 public BoundedArrayList(BoundedArrayList list)
2 {
3 this.size = list.size;
4 this.elements = new Object[list.elements.length];
5 for (int i = 0; i < list.size; i++)

March 26, 2015 185

6 {
7 this.elements[i] = list.elements[i];
8 }
9 }

From the class invariant we can conclude that the above code fragment does not throw an ArrayIndexOutOfBoundExceptions.
Rather than creating a new array and copying the content from the old one to the new one ourselves,

we can also delegate to the Arrays class, which is part of the java.util package. The static method
copyOf(original, length) returns a new array and copies the values of the original array to
the new one, truncating or padding with default values (if necessary) so the returned copy has the specified
length. Exploiting this method, we can implement the copy constructor as follows.

1 public BoundedArrayList(BoundedArrayList list)
2 {
3 this.size = list.size;
4 this.elements = Arrays.copyOf(list.elements, list.elements.length);
5 }

9.2.5 The Methods Section

The accessor getSize can be implemented as follows.

1 public int getSize()
2 {
3 return this.size;
4 }

The method get(index) returns the element of the list with the given index. This corresponds to
the element of the array elements with the given index. Note that the return type of the method get
is T whereas the base type of the array elements is Object. Hence, we have to cast. If the given index
is invalid, that is, it is smaller than zero, or it is greater than or equal to the size of the list, then the method
get throws an IndexOutOfBoundsException.

1 public T get(int index) throws IndexOutOfBoundsException
2 {
3 if (index >= 0 && index < this.size)
4 {
5 return (T) this.elements[i];
6 }
7 else
8 {
9 throw new IndexOutOfBoundsException("Index is invalid");

10 }
11 }

Note that we can conclude from the class invariant that the cast in line 5 will never fail.
Before implementing the add method, let us consider the following client snippet.

186 Franck van Breugel and Hamzeh Roumani

1 final int MAX_SIZE = 2;
2 List<Double> list = new BoundedArrayList<Double>(MAX_SIZE);
3 list.add(new Double(0.0));
4 list.add(new Double(1.0));
5 list.add(new Double(2.0));

Once we reach the end of line 3, memory can be depicted as follows.

...
100 Client.main invocation

list 200
MAX SIZE 2

200 BoundedArrayList<Double> object
size 1

elements 300

300 Object[] object
length 2

[0] 400
[1]

400 Double object
0.0

...

In line 4 we add another Double object to the collection. We add a reference to a Double object to the
first available free cell, that is, the first cell that contains null. The index of this cell is the value of the
attribute size. Furthermore, the attribute size has to be incremented by one to reflect that an element has
been added to the collection. Since the element has been added successfully, the methods returns true. Once
we reach the end of line 4, memory can be depicted as follows.

March 26, 2015 187

...
100 Client.main invocation

list 200
MAX SIZE 2

200 BoundedArrayList<Double> object
size 2

elements 300

300 Object[] object
length 2

[0] 400
[1] 500

400 Double object
0.0

500 Double object
1.0

...

In line 5 we attempt to add yet another Double object to the collection. However, since there is no free cell
available, the method simply returns false.

We can implement the add method as follows.

1 public boolean add(T element)
2 {
3 boolean added;
4 if (this.size == this.elements.length)
5 {
6 added = false;
7 }
8 else
9 {

10 this.elements[this.size] = element;
11 this.size++;
12 added = true;
13 }
14 return added;
15 }

The contains(element) method checks whether a given element is part of the list. This method
can be implemented as follows.

1 public boolean contains(T element)

188 Franck van Breugel and Hamzeh Roumani

2 {
3 boolean found = false;
4 for (int i = 0; i < this.size; i++)
5 {
6 found = found || this.elements[i].equals(element);
7 }
8 return found;
9 }

The variable found keeps track whether we have found element. This is captured by the following loop
invariant.

found == ∃0 ≤ j < i : this.elements[j].equals(element)

From the class invariant we can conclude that the above method does not throw an ArrayIndexOutOfBoundsException.
Once we have found element, we can exit the loop. This can be accomplished by changing the

condition of the loop as follows.

1 public boolean contains(T element)
2 {
3 boolean found = false;
4 for (int i = 0; i < this.size && !found; i++)
5 {
6 found = found || this.elements[i].equals(element);
7 }
8 return found;
9 }

Now that we have modified the condition of the loop, we can further simplify the body of the loop as
follows.

1 public boolean contains(T element)
2 {
3 boolean found = false;
4 for (int i = 0; i < this.size && !found; i++)
5 {
6 found = this.elements[i].equals(element);
7 }
8 return found;
9 }

The first part of the remove(element) method is (almost) the same as the contains(element)
method: we try to locate the given element. If the element is not found then the method simply returns
false. Otherwise, the element has to be removed from the list and true has to be returned. Assume that we
have found the element at index if in the array. Then we have to move the elements at the indices if + 1,
if + 2, . . . one cell back. This can be accomplished by copying the element from cell if + 1 to cell if ,

March 26, 2015 189

copying the element from cell if + 2 to if + 1, . . . , and removing the element from the last cell (by setting
its value to null).

1 public boolean remove(T element)
2 {
3 boolean found = false;
4 int i;
5 for (i = 0; i < this.size && !found; i++)
6 {
7 found = this.elements[i].equals(element);
8 }
9 if (found)

10 {
11 for (; i < this.size; i++)
12 {
13 this.elements[i - 1] = this.elements[i];
14 }
15 this.elements[this.size - 1] = null;
16 this.size--;
17 }
18 return found;
19 }

Note that we declare the variable i outside the scope of the first loop so that we can employ it in the second
loop as well. Assume that we have found the element at index if . Then i is equal to if + 1 when exiting
the first loop.

The following is a loop invariant for the second loop.

∀if < j < i : this.elements[j] has been copied to this.elements[j − 1]

Two lists are the same if they contain the same elements in the same order. Hence, the equals method
can be implemented as follows.

1 public boolean equals(Object object)
2 {
3 boolean equal;
4 if (object != null && this.getClass() == object.getClass())
5 {
6 BoundedArrayList other = (BoundedArrayList) object;
7 equal = this.size() == other.size();
8 for (int i = 0; i < this.size() && equal; i++)
9 {

10 equal = equal && this.elements[i].equals(other.elements[i]);
11 }
12 }
13 else

190 Franck van Breugel and Hamzeh Roumani

14 {
15 equal = false;
16 }
17 return equal;
18 }

For the above loop, we have the following loop invariant.

equal == this.size() == other.size() &&
∀0 ≤ j < i : this.elements[j].equals(other.elements[j])

The hash code of a list list is defined as∑
0≤j<list.getSize()

31list.getSize()−1−j × list.get(j).hashCode()

We can implement the hashCode method as follows.

1 public int hashCode()
2 {
3 final int BASE = 31;
4 int hashCode = 0;
5 for (int i = 0; i < this.size; i++)
6 {
7 hashCode = BASE * hashCode + this.elements[i].hashCode();
8 }
9 return hashCode;

10 }

A loop invariant for the above loop is

hashCode ==
∑

i<j<this.size

31j × this.elements[j].hashCode()

Consider the following snippet of client code.

1 final int MAX_SIZE = 4;
2 List<Double> list = new BoundedArrayList<Double>(MAX_SIZE);
3 list.add(new Double(0.0));
4 list.add(new Double(1.0));
5 list.add(new Double(2.0));
6 output.println(list);

In line 6 the toString method is invoked implicitly. The above code fragment gives rise to the following
output.

[0.0, 1.0, 2.0]

We can implement the toString method as follows.

March 26, 2015 191

1 public String toString()
2 {
3 StringBuffer representation = new StringBuffer("[");
4 if (this.size != 0)
5 {
6 for (int i = 0; i < this.size - 1; i++)
7 {
8 representation.append(this.elements[i]);
9 representation.append(", ");

10 }
11 representation.append(this.elements[this.size - 1]);
12 }
13 representation.append("]");
14 return representation.toString();
15 }

9.2.6 The iterator Method

According to the API of the Iterable interface, the method iterator returns an object of type Iterator.
Since Iterator is an interface we cannot create instances of it. Hence, we have to return an instance
of a class that implements the Iterator interface. Therefore, we develop a class that implements the
Iterator interface. We call the class BoundedArrayListIterator. The iterator method
of the BoundedArrayList class will be implemented in such a way that it returns an instance of the
BoundedArrayListIterator class.

The BoundedArrayListIterator Class

To specify that our class implements Iterator<T>, we introduce the following class header.

1 public class BoundedArrayListIterator<T> implements Iterator<T>

For our class to implement Iterator<T>, we have to implement the following methods

boolean hasNext()
T next()
void remove()

according to the API of the Iterator interface. Recall that, by default, all methods specified in an
interface are public.

The Attributes Section

Like any other class, we start with choosing the attributes. Let us first have a look at a small fragment of
client code that utilizes the BoundedArrayListIterator class. The snippet

192 Franck van Breugel and Hamzeh Roumani

1 List<Double> list = new BoundedArrayList<Double>();
2 list.add(new Double(0.0));
3 list.add(new Double(1.0));
4 Iterator<Double> iterator = list.iterator();
5 while (iterator.hasNext())
6 {
7 output.println(iterator.next());
8 }

produces the output

0.0
1.0

Recall that the iterator method will be implemented in such a way that it returns an instance of the
BoundedArrayListIterator class. Hence, the variable iterator refers to a BoundedArrayListIterator
object. This object needs to have access to the elements of the array elements of the BoundedArrayList
object list. Hence, we introduce an attribute elements of type Object[]. Furthermore, we have to
keep track which element to return next. For that purpose, we introduce an attribute next of type int that
contains the index of the cell of the array elements which is returned when the method next is invoked.
Hence, we declare the following two attributes.

1 private Object[] elements;
2 private int next;

Since next is used as an index of the array elements, we maintain the following class invariant.

1 /*
2 * class invariant: this.next >= 0 &&
3 * for all 0 <= i < this.elements.length : this.elements[i] instanceof T
4 */

The Constructor Section

As we already mentioned above, the elements attribute of the BoundedArrayListIterator ob-
ject should have access to the elements of the list, which are captured by the elements attribute of
the BoundedArrayList object. The BoundedArrayList object can pass this information to the
BoundedArrayListIterator object as an argument of the constructor. Hence, the header of the con-
structor of the BoundedArrayListIterator class is

1 public BoundedArrayListIterator(Object[] elements)

Before implementing this constructor, let us implement the iteratormethod of the BoundedArrayList
class first.

March 26, 2015 193

1 public Iterator<T> iterator()
2 {
3 return new BoundedArrayListIterator<T>(this.elements);
4 }

Since the BoundedArrayListIterator<T> class implements the Iterator<T> interface, the re-
turn statement of the iterator method is compatible with the return type of the method.

Let us get back to the implementation of the constructor. We implement it as follows.

1 public BoundedArrayListIterator(Object[] elements)
2 {
3 this.elements = elements;
4 this.next = 0;
5 }

The Methods Section

We have left to implement the following methods.

boolean hasNext()
T next()
void remove()

To test if the iterator has a next element, we have to check if the cell of the array elements with index
next is filled. To ensure that we do not get an ArrayIndexOurOfBoundsException, we have to
verify that the index next is valid, that is, is smaller than elements.length (from the class invariant
we already know that it is greater than or equal to zero). Hence, we can implement the hasNext method
as follows.

1 public boolean hasNext()
2 {
3 return this.next < this.elements.length && this.elements[this.next] != null;
4 }

Recall that if the left hand side of the conjunction, this.next < this.elements.length, eval-
uates to false, then the right hand side of the conjunction, this.elements[this.next] != null,
is not evaluated in Java.

The nextmethod returns the next element. If no such element exists, then a NoSuchElementException
is thrown. This method can be implemented as follows.

1 public T next() throws NoSuchElementException
2 {
3 if (this.hasNext())
4 {
5 T element = (T) this.elements[this.next];
6 this.next++;

194 Franck van Breugel and Hamzeh Roumani

7 return element;
8 }
9 else

10 {
11 throw new NoSuchElementException("Iterator has no more elements");
12 }
13 }

According to the API of the Iterator interface, the remove method is optional. The API also
specifies that an UnsupportedOperationException has to be thrown if the method is not supported.
To keep the class as simple as possible, we decided not to support the method. Hence, the remove method
can be implemented as follows.

1 public void remove() throws UnsupportedOperationException
2 {
3 throw new UnsupportedOperationException("Iterator does not support remove");
4 }

9.2.7 Unbounded Size

Whereas the maximum size of a BoundedArrayList is fixed, an UnboundedArrayList can grow
without any limit. In the UnboundedArrayList class, the only method that needs to be implemented
differently from the BoundedArrayList class is the add method. In case there is no free cell available
for the element to be added to the list, we simply double the length of the array. That is, we create a new
array of twice the length and copy all elements from the original array to the new one.2

1 public boolean add(T element)
2 {
3 if (this.size == this.elements.length)
4 {
5 this.elements = Array.copyOf(this.elements, this.elements.length * 2);
6 }
7 this.elements[this.size] = element;
8 this.size++;
9 return true;

10 }

9.3 Command Line Arguments

The main method of an app has the following header.

2Doubling the length of the array is much more efficient than adding a single cell to the array. The details are beyond the scope
of these notes.

March 26, 2015 195

1 public static void main(String[] args)

The method has a single parameter of type String[], an array of Strings. This array contains the so
called command line arguments.

The next app uses the command line arguments.

1 public class StudentClient
2 {
3 public static void main(String[] args)
4 {
5 PrintStream output = System.out;
6

7 if (args.length == 0)
8 {
9 output.println("Provide a student ID as the command line argument");

10 }
11 else
12 {
13 final String VALID = "\\d{9}";
14 if (args[0].matches(VALID))
15 {
16 Student student = new Student(args[0]);

17
...

18

19 }
20 else
21 {
22 output.println("Provide a valid student ID as the command line

argument");
23 }
24 }
25 }
26 }

In line 7 we check if any command line arguments are provided. In line 13 and 15, the first command line
argument is used.

When running the app, the ID 123456789 can be provided as a command line argument as follows.

java StudentClient "123456789"

9.4 Beyond the Basics

9.4.1 The getSize Method

The attribute size is redundant since it can be computed from the attribute elements as follows.

196 Franck van Breugel and Hamzeh Roumani

1 public int getSize()
2 {
3 int size = 0;
4 while (size < this.elements.length && this.elements[size] != null)
5 {
6 size++;
7 }
8 return size;
9 }

This implies that we do not have to introduce the attribute size. However, the attribute size somewhat
simplifies our code and makes it more efficient as we will see below.

Let us determine the running time3 of the above getSize method. First, let us estimate the number of
elementary operations that are performed at each line of the method.

line number
3 3
4 11
6 3
8 2

Next, we determine how often each line is executed. Obviously, line 3 and 8 are only executed once.
How often line 4 and 6 are executed depends on the number elements that are stored in the array elements.
Assume that this array contains n elements. Then line 4 is executed n + 1 times and line 6 is executed n
times. Hence, we estimate the total number of elementary operations to be

3 + (n+ 1)× 11 + n× 3 + 2 = 14n+ 16.

Therefore, (an estimate of) the number of elementary operations performed by the above getSize method
can be represented by the function f : N→ N defined by

f(n) = 14n+ 16,

where n is the number of elements stored in the array elements.

Proposition 4 f ∈ O(n).

Proof According to Definition 6, we have to show that

∃M ∈ N : ∃F ∈ N : ∀n ≤M : 14n+ 16 ≤ F × n.

First, we have to pick a particular “minimal size” M and a particular “factor” F . We pick M = 16 and
F = 15. Then it remains to show that

∀n ≥ 16 : 14n+ 16 ≤ 15n.
3We refer the reader to Appendix A for an introduction to running time analysis.

March 26, 2015 197

Let n be an arbitrary number with n ≥ 16. Then

14n+ 16 ≤ 14n+ n = 15n.

�

Hence, we say that the running time of the above getSize method is O(n), where n is the number
elements of the list.

Let us also determine the running time of the getSize method of Section 9.2.5. We estimate the
number of elementary operations executed in line 3 to be 3. This line is only executed once. Hence, (an
estimate of) the number of elementary operations performed by the getSize method can be represented
by the function g : N→ N defined by

g(n) = 3,

where n is the number of elements stored in the array elements.

Proposition 5 g ∈ O(1).

Proof According to Definition 6, we have to show that

∃M ∈ N : ∃F ∈ N : ∀n ≤M : 3 ≤ F × 1.

First, we have to pick a particular “minimal size” M and a particular “factor” F . We pick M = 1 and
F = 3. Then it remains to show that

∀n ≥ 1 : 3 ≤ 3× 1

which is obviously the case. �

Hence, we say that the running time of the getSize method is O(1).
The implementation presented in Section 9.2.5 only performs a constant number of elementary opera-

tions, no matter how many elements the list contains. However, if we were not to introduce the (redundant)
attribute size, then we would have to implement the getSize method as described above. In that case,
the number of elementary operations would depend on the number elements of the list. This would be less
efficient, especially if the number of elements of the list is large.

9.4.2 The contains and remove Methods

As we already mentioned in Section 9.2.5, the first part of the remove method is almost identical to the
contains method. To avoid code duplication, we can introduce an auxiliary method that consists of the
common part.

The method find(element) tries to find an index at which the given element can be found in the
list. If no such index exists, then the method returns a special value different from any valid index, namely
−1.

198 Franck van Breugel and Hamzeh Roumani

1 private int find(T element)
2 {
3 int index = -1;
4 for (int i = 0; i < this.size && index == -1; i++)
5 {
6 if (this.elements[i].equals(element))
7 {
8 index = i;
9 }

10 }
11 return index;
12 }

We have that

(index == −1 && ∀0 ≤ j < i :!this.element[j].equals(element))
|| (index! = −1 && this.element[index].equals(element))

is a loop invariant for the above loop.
Using the find method, we can implement the contains method as follows.

1 public boolean contains(T element)
2 {
3 return this.find(element) != -1;
4 }

We can also use the find method to implement the remove method.

1 public boolean remove(T element)
2 {
3 int index = this.find(element);
4 if (index != -1)
5 {
6 for (int i = index + 1; i < this.size; i++)
7 {
8 this.elements[i - 1] = this.elements[i];
9 }

10 this.elements[this.size - 1] = null;
11 this.size--;
12 }
13 return index != -1;
14 }

9.4.3 The BoundedArrayListIterator as an Inner Class

The BoundedArrayListIterator class is only used in the BoundedArrayList class. To ensure
that only the BoundedArrayList class can make use of the BoundedArrayListIterator class,

March 26, 2015 199

we can define the latter class as a private inner class of the former class as follows.

1 public class BoundedArrayList<T> implements List<T>
2 {
3 private int size;
4 private Object[] elements;
5

6
...

7

8 private class BoundedArrayListIterator<T> implements Iterator<T>
9 {

10
...

11 }
12 }

Note that the class BoundedArrayListIterator is private and, hence, will not show up in the API.
Also note that the class BoundedArrayListIterator is defined within the scope of the BoundedArrayList
class and, hence, is not visible outside the latter class.

200 Franck van Breugel and Hamzeh Roumani

Appendix A

Running Time Analysis

We use N to denote the set {0, 1, 2, . . .} of natural numbers. Let f : N → N be a function from natural
numbers to natural numbers. We will associate such a function with a piece of Java code. This function will
capture the answer to the question “How many elementary operations are performed at most when executing
the Java code for an input of a given size?”

Consider the following method.

1 /**
2 * Returns the factorial of the given number.
3 *
4 * @param n a number.
5 * @pre. n > 0
6 * @return the factorial of the given number.
7 */
8 public static long factorial(int n)
9 {

10 long factorial = 1;
11 int i = 1;
12 while (i <= n)
13 {
14 factorial *= i;
15 i++;
16 }
17 return factorial;
18 }

Let us first estimate how many elementary operations are performed at each line of the above method.

201

202 Franck van Breugel and Hamzeh Roumani

line number
10 2
11 2
12 4
14 4
15 3
17 2

For example, in line 14 we

• look up the value of i,

• look up the value of factorial,

• multiply these two values, and

• assign the result of the multiplication to factorial.

We will come back to the fact that these are just estimates. Next, we determine how often each line
is executed. Obviously, line 10, 11 and 17 are executed once. How often line 12, 14 and 15 are executed
depends on the value of n. Assume the value of the variable n is the integer n. Then, line 12, 14 and 15 are
executed n times. Therefore, we estimate the total number of elementary operations to be

2 + 2 + n× 4 + n× 4 + n× 3 + 2 = 11n+ 6.

Hence, (an estimate of) the total number of elementary operations can be captured by a function f : N→ N
defined by

f(n) = 11n+ 6,

where n represents the value of n.
The actual number of elementary operations that are performed depends on many factors. For example,

some computers can assign a value to a variable of type long in a single operation whereas other computers
may need two. Hence, estimates like

f1(n) = 14n+ 12

and

f2(n) = 7n+ 3

are equally reasonable. The big O notation provides us with an abstraction that can capture all these es-
timates. The functions f , f1 and f2 are all elements of O(g), where the function g : N → N is defined
by

g(n) = n.

Why are f , f1 and f2 elements of O(g)? For that we need the formal definition of the big O notation.

Definition 6 Let f : N→ N and g : N→ N be functions. Then f ∈ O(g) if

∃M ∈ N : ∃F ∈ N : ∀n ≥M : f(n) ≤ F × g(n),

March 26, 2015 203

That is, we can find a particular “minimal size” M and a particular “factor” F such that for all inputs of
size n that are greater than or equal to the “minimal size,” we have that f(n) ≤ F × g(n).

The above introduced function g, which assigns to n the value n, is often simply denoted by n and,
hence, we often write f ∈ O(n) instead of f ∈ O(g).

Proposition 7 f ∈ O(n).

Proof To prove that f ∈ O(n) we need to pick a particular M and a particular F . We pick M = 6 and
F = 12. Then it remains to show that

∀n ≥ 6 : 11n+ 6 ≤ 12n,

that is, 11n+ 6 ≤ 12n for all n ≥ 6. Let n be an arbitrary natural number with n ≥ 6. Then

11n+ 6 ≤ 11n+ n = 12n.

Hence, the above is true. �

Similarly, we can prove that f1 ∈ O(n). This time we pick M = 12 and F = 15. It remains to prove
that

∀n ≥ 12 : 14n+ 12 ≤ 15n,

which is trivially true. To prove that f2 ∈ O(n), we pick M = 8 and F = 3. In this case, it remains to
prove that

∀n ≥ 8 : 7n+ 3 ≤ 8n,

which is obviously true.
Let us consider another Java snippet.

1 /**
2 * Sorts the given array.
3 *
4 * @param a an array of integers.
5 * @pre. a != null && a.length > 0
6 */
7 public static void sort(int[] a)
8 {
9 for (int i = 0; i < a.length; i++)

10 {
11 int min = i;
12 for (int j = i + 1; j < a.length; j++)
13 {
14 if (a[j] < a[min])
15 {
16 min = j;

204 Franck van Breugel and Hamzeh Roumani

17 }
18 }
19 int temp = a[i];
20 a[i] = a[min];
21 a[min] = temp;
22 }
23 }

Again, let us first estimate how many elementary operations are performed at each line of the above method.
line number
9 10
11 2
12 10
14 8
16 2
19 4
20 6
21 4

Next, we determine how often each line is executed. Line 9, 11, 19, 20 and 21 are executed n times,
where n is the length of the array. Line 12 and 14 are executed

(n− 1) + (n− 2) + · · ·+ 1 =
n−1∑
i−1

i =
n(n− 1)

2

times.1

Note that we do not know how often line 16 is executed. However, we do know that line 16 is executed
at most n(n−1)

2 times. An upperbound of the total number of elementary operations that is performed is

n× 10 + n× 2 +
n(n− 1)

2
× 10 +

n(n− 1)
2

× 8 +
n(n− 1)

2
× 2 + n× 4 + n× 6 + n× 4

= 10n2 + 16n.
1We can prove that for all n ≥ 1,

Pn−1
i−1 i = n(n−1)

2
by induction on n. In the base case, when n = 1, we have that 0 = 1×0

2
.

In the inductive step, let n > 1 and assume that
Pn−2

i−1 i = (n−1)(n−2)
2

(the induction hypothesis). Then

n−1X
i−1

i = (

n−2X
i−1

i) + (n− 1)

=
(n− 1)(n− 2)

2
+ (n− 1) [induction hypothesis]

=
n2 − 3n + 2 + 2n− 2

2

=
n2 − n

2

=
n(n− 1)

2
.

March 26, 2015 205

This can be captured by a function f : N→ N defined by

f(n) = 10n2 + 16n.

To abstract from the estimates, we again exploit the big O notation and show that f ∈ O(n2), where we use
n2 to denote the function that maps n to n2.

Proposition 8 f ∈ O(n2).

Proof To show that f ∈ O(n2), we pick M = 16 and F = 11. It remains to prove that

∀n ≥ 16 : 10n2 + 16n ≤ 11n2.

Let n ≥ 16. Then

10n2 + 16n ≤ 10n2 + n2 = 11n2.

That concludes the proof. �

	Introduction
	Implementing Static Features
	Introduction
	What are Utility Classes?
	Why are Utility Classes Needed?
	UML and Memory Diagrams
	Check your Understanding

	How: The Definition of a Utility Class
	Class Structure
	Declaring and Initializing Attributes
	The Constructor Section
	Defining Methods
	Testing a Utility Class
	Check your Understanding

	Arguments versus Parameters
	Passing Arguments By Value
	Initializing Parameters
	Attribute Shadowing
	Method Overloading and Binding
	Check your Understanding

	Preconditions versus Validation
	Preconditions and the Client
	Validation and the Implementer
	Check your Understanding

	Documenting a Utility Class
	API Generation through javadoc
	Documenting Preconditions and Exceptions
	Check your Understanding

	Beyond the Basics
	Using an Interface to Declare Parameters
	Using Generics for Parameters and Returns
	Check your Understanding
	Generics with Wildcards
	Loop Invariants
	Hoare Logic

	Implementing Non-Static Features
	Introduction
	Classes with only Non-Static Features
	UML and Memory Diagrams
	Check your Understanding

	How: The Class Definition
	Class Structure
	Declaring and not Initializing Attributes
	The Constructor Section
	Defining Methods
	Documenting a Class
	Testing a Class

	Beyond the Basics
	Avoiding Code Duplication
	Immutable Objects
	Attribute Caching
	Class Invariants
	The hashCode Method
	Validation and the Implementer
	Check your Understanding

	Mixing Static and Non-Static Features
	Introduction
	Static versus Non-Static Features
	Interaction of Static and Non-Static Attributes
	Incorporating an Invocation Counter
	Stamping a Serial Number on Objects

	Two Design Patterns
	Maintaining a Singleton
	Enforcing One Instance Per State
	Check you Understanding

	Beyond the Basics
	Synchronized Methods

	Implementing Aggregation and Composition
	Implementing Aggregation
	What is Aggregation?
	UML and Memory Diagrams
	The Attributes Section
	The Constructors Section
	The Methods Section
	Beyond the Basics

	Implementing Composition
	What is Composition?
	UML and Memory Diagrams
	The Attributes Section
	The Constructors Section
	The Methods Section
	Beyond the Basics

	Implementing Aggregation Using Collections
	What is a Collection?
	The Attributes Section
	The Constructors Section
	The Methods Section
	Beyond the Basics

	Implementing Inheritance
	What is Inheritance?
	UML and Memory Diagrams
	The GoldenRectangle Class
	The Attributes Section
	The Constructors Section
	The Methods Section

	The PricingException Class
	The Attributes Section
	The Constructors Section
	The Methods Section

	The ColouredRectangle Class
	The Attributes Section
	The Constructors Section
	The Methods Section

	Implementing Abstract Classes
	Implementing Interfaces
	Beyond the Basics
	The getVolume Method
	Preconditions
	Postconditions
	Exceptions
	Final Methods and Final Classes
	The equals Method Revisited
	Substitution Principle
	Threads

	Implementing Graphical User Interfaces
	Introduction
	Dynamic Menu
	The Model Class
	The View Class
	The Controller Class
	The Main App

	Resetting the Counts
	The Model Class
	The View Class
	The Controller Class

	A Round Button

	Recursion
	Introduction
	Proving Correctness and Termination
	Recursive Methods that Return an Integer
	Recursive Methods for Lists

	Arrays
	Arrays
	What is an Array?
	Memory Diagrams

	Implementing a List by means of an Array
	Introduction
	The Class Header
	The Attributes Section
	The Constructors Section
	The Methods Section
	The iterator Method
	Unbounded Size

	Command Line Arguments
	Beyond the Basics
	The getSize Method
	The contains and remove Methods
	The BoundedArrayListIterator as an Inner Class

	Running Time Analysis

