MATH/EECS 1028: DISCRETE MATH FOR ENGINEERS WINTER 2015 Tutorial 2 (Week of Jan 19, 2015)

Notes:

- 1. Assume \mathbb{R} to denote the real numbers, \mathbb{Z} to denote the set of integers $(\ldots, -2, -1, 0, 1, 2, \ldots)$ and \mathbb{N} to denote the natural numbers $(1, 2, 3, \ldots)$.
- 2. Topics: Number systems, sets, set operations, functions.
- 3. Note to the TA: Attendance will be taken each week. There is a short quiz this week containing a couple of questions that are very similar to the ones done last week.

Questions:

- 1. Can you conclude that A = B if A, B, C are sets such that
 - (a) $A \cap C = B \cap C$?
 - (b) $A \cup C = B \cup C$ and $A \cap C = B \cap C$?
- 2. Let $A_i = \{\dots, -2, -1, 0, 1, \dots, i\}$. Find
 - (a) $\cup_{i=1}^n A_i$?
 - (b) $\cap_{i=1}^n A_i$?
- 3. Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if $i \in \mathbb{N}$ and
 - (a) $A_i = \{x | x \in \mathbb{N}, x \ge i\}$
 - (b) $A_i = \{x | x \in \mathbb{R}, x > i\}$
- 4. The successor of the set A is the set $A \cup \{A\}$. Find the successor of the sets
 - (a) ∅
 - (b) $\{\emptyset\}$
 - (c) $\emptyset \in \{\emptyset\}$
 - (d) $\{\emptyset, \{\emptyset\}\}$
- 5. Show that if A, B are sets then $\overline{A \cup B} = \overline{A} \cap \overline{B}$, by showing that each side is a subset of the other side.
- 6. Determine whether f is a function from \mathbb{Z} to \mathbb{R} if
 - (a) $f(n) = \sqrt{n^2 + 1}$?
 - (b) $f(n) = \frac{1}{n^2 4}$?
- 7. Determine whether $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto (surjective) if

- (a) f(m,n) = m + n + 1?
- (b) f(m,n) = |m| |n|?
- (c) $f(m,n) = m^2 4?$
- 8. Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R}
 - (a) $f(x) = -3x^2 + 7$

(b)
$$f(x) = \frac{x+1}{x+2}$$
.

9. Let f(x) = 2x where the domain of f is \mathbb{R} . What is

- (a) $f(\mathbb{Z})$?
- (b) $f(\mathbb{N})$?
- (c) $f(\mathbb{R})$?
- 10. Suppose that f is an invertible function from Y to Z and g is an invertible function from X to Y. Show that the inverse of the composition $f \circ g$ is given by $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.
- 11. Find $g^{-1}(3)$ given $g(x) = \frac{3x+1}{2x+g(x)}$.
- 12. Let f be the function $f(x) = ax^2 \sqrt{2}$ for some positive real number a. If $f(f(\sqrt{2})) = -\sqrt{2}$ what is a?
- 13. Let $x = 2^{\log_b 3}$ and $y = 3^{\log_b 2}$. Find x y.
- 14. If $\frac{\log_b a}{\log_c a} = \frac{19}{99}$ and $\frac{b}{c} = c^k$, compute k.
- 15. Try this for practice: Let f be a function from A to B. Let S, T be subsets of B. Show that $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$.