MATH/EECS 1028: DISCRETE MATH FOR ENGINEERS WINTER 2015 Tutorial 1 (Week of Jan 12, 2015)

Notes:

- 1. Assume \mathbb{R} to denote the real numbers, \mathbb{Z} to denote the set of integers $(\ldots, -2, -1, 0, 1, 2, \ldots)$ and \mathbb{N} to denote the natural numbers $(1, 2, 3, \ldots)$.
- 2. Topics: Number systems, quadratic equations, exponents, sets, set operations.
- 3. Attendance will be taken each week. There is nothing to be submitted this week.
- 4. In the tutorials next week they have to submit a couple of questions that are very similar to the ones done this week.

Questions:

1. Simplify: $5 \times (3^{2x} - 9^x \times 5^{-1}) \times 2^{-2}$ Solution:

$$5 \times (3^{2x} - 9^x \times 5^{-1}) \times 2^{-2} = 5 \times (9^x - 9^x \times 5^{-1}) \times 1/4$$

= 5 \times 4/5 \times 9^x \times 1/4
= 9^x

2. Solve the equation: $9^x - 5 \times 3^x + 4 = 0$.

Solution: Let $t = 3^x$. Then we have the quadratic equation: $t^2 - 5t + 4 = 0$. We can solve this equation to get t = 4, 1 which correspond to $x = \log_3 4, 0$.

3. Solve the equation: $9^{x^2} = 27^{3x-3}$.

Solution: The left hand side equals 3^{2x^2} . The right hand side equals 3^{9x-9} . Taking logs base 3 of both sides we get $2x^2 = 9x - 9$ or $2x^2 - 9x + 9 = 0$, which is a quadratic equation that has solutions x = 3/2 and x = 3.

- 4. Are these statements correct? Why or why not?
 - (a) $\{\{1\}\} = \{1\}$

Solution: No. The right hand side contains one number, the left hand side contains one set.

(b) $\emptyset \neq \{\emptyset\}$

Solution: Yes. The right hand side contains one element, the left hand side is the empty set.

(c) $\emptyset \in \{\emptyset\}$

Solution: Yes. The right hand side contains \emptyset as an element.

- (d) $\emptyset \in \{\{\emptyset\}\}\$ Solution: No. The right hand side contains a set but not the element \emptyset .
- (e) $\emptyset \subseteq \emptyset$ Solution: Yes. The empty set is a subset of every set.
- (f) $\emptyset \subseteq \{\emptyset\}$ Solution: Yes. The empty set is a subset of every set.
- (g) {{∅}} ⊂ {∅, {∅}}
 Solution: Yes. The right hand side contains the left hand side and another element.
- 5. Enumerate the following sets
 - (a) The power set of {∅, {a}}
 Solution: {∅, {∅}, {{a}}, {∅, {a}}}.
 - (b) A^3 when $A = \{a\}$. Solution: $\{(a, a, a)\}$.
 - (c) $A \times B \times C$, $(A \times B) \times C$ when $A = \{a\}, B = \{b\}, C = \{c\}$. Solution: $A \times B \times C = \{(a, b, c)\}, (A \times B) \times C = \{((a, b), c)\}.$
- 6. Show that
 - (a) If A is a set A × Ø = Ø × A = Ø.
 Solution: Using the definition of Cartesian product, each ordered pair (x, y) ∈ A × Ø satisfies y ∈ Ø. Since there are no such y, A × Ø = Ø. Using identical arguments one can show Ø × A = Ø.
 - (b) If A, B, C, D are sets and A ⊆ B, C ⊆ D then A × C ⊆ B × D.
 Solution: Consider any element (ordered pair) (x, y) ∈ A × C. We know that x ∈ A, y ∈ C. Since A ⊆ B, C ⊆ D, so it follows that x ∈ B, y ∈ D. Therefore (x, y) ∈ B × D.

Since every element of $A \times C$ belongs to $B \times D$, it follows that $A \times C \subseteq B \times D$.

(a) Suppose that A, B are sets and A × B = Ø. What can you conclude about A, B?
Solution: Using the reasoning of Q6(a) above, we conclude that either A = Ø or B = Ø.

Note that this allows for both A, B to be empty.

- (b) What is the cardinality of {{a, b}, {c, d}}?Solution: 2.
- 8. Prove that $\sqrt{3}$ is not rational.

Solution: We replicate the proof of the irrationality of $\sqrt{2}$ shown in class.

Let us assume it is rational. So we can assume that $\sqrt{3} = m/n$ for integers m, n and $n \neq 0$. Assume further that m, n have no common factors greater than 1. Then we have

$$\sqrt{3} = m/n$$
 Squaring both sides, we get
 $3 = m^2/n^2$
 $3n^2 = m^2$ Since the left side is a multiple of 3, so is the right side. So
 $m = 3k$ for some integer k. So
 $3n^2 = 9k^2$
 $n^2 = 3k^2$ Since the right side is a multiple of 3, so is the left side. So
 $n = 3j$ for some integer j.

We just showed that m, n have a common factor of 3. This is a contradiction since we assumed m, n have no common factors. Therefore $\sqrt{3}$ cannot be rational.

- 9. Draw the Venn diagram for the set $A \cap (B C)$ Solution: Omitted.
- 10. What can you say about the sets A, B if
 - (a) $A \cup B = A$ Solution: $B \subseteq A$.
 - (b) $A \cap B = A$ Solution: $A \subseteq B$.
 - (c) $A \cup B = B \cup A$ Solution: Always true for any A, B.
 - (d) A B = ASolution: $A \cap B = \emptyset$.
 - (e) A B = B ASolution: A = B.