Next: Predicate Logic

Ch 1.4

-Predicates and quantifiers

-Rules of Inference

Predicate Logic

- A predicate is a proposition that is a function of one or more variables.
 - E.g.: P(x): x is an even number. So P(1) is false, P(2) is true,....
- Examples of predicates:
 - Domain ASCII characters IsAlpha(x) : TRUE iff x is an alphabetical character.
 - Domain floating point numbers IsInt(x): TRUE iff x is an integer.
 - Domain integers: Prime(x) TRUE if x is prime, FALSE otherwise.

Quantifiers

- describes the values of a variable that make the predicate true. E.g. ∃x P(x)
- Domain or universe: set of values taken by a variable (sometimes implicit)

Two Popular Quantifiers

- Universal: ∀x P(x) "P(x) for all x in the domain"
- Existential: $\exists x P(x) "P(x)$ for some x in the domain" or "there exists x such that P(x) is TRUE".
- Either is meaningless if the domain is not known/specified.
- Examples (domain real numbers)
 - $\forall x (x^2 \ge 0)$
 - –∃x (x >1)
 - $-(\forall x>1)(x^2 > x)$ quantifier with restricted domain

Using Quantifiers

Domain integers:

- Using implications: The cube of all negative integers is negative.
 ∀x (x < 0) →(x³ < 0)
- Expressing sums :

```
\forall n (\sum_{i=1}^{n} i = n(n+1)/2)
```

Aside: summation notation

Scope of Quantifiers

- ∀∃ have higher precedence than operators from Propositional Logic; so ∀x
 P(x) ∨ Q(x) is not logically equivalent to
 ∀x (P(x) ∨ Q(x))
- $\exists x (P(x) \land Q(x)) \lor \forall x R(x)$

Say P(x): x is odd, Q(x): x is divisible by 3, R(x): (x=0) \lor (2x >x)

 Logical Equivalence: P = Q iff they have same truth value no matter which domain is used and no matter which predicates are assigned to predicate variables.