Tools for reasoning: Logic

Ch. 1: Introduction to Propositional Logic

- Truth values, truth tables
- Boolean logic: $\vee \land \neg$
- Implications: $\rightarrow \leftrightarrow$

Why study propositional logic?

- A formal mathematical "language" for precise reasoning.
- Start with propositions.
- Add other constructs like negation, conjunction, disjunction, implication etc.
- All of these are based on ideas we use daily to reason about things.

Propositions

- Declarative sentence
- Must be either True or False.

Propositions:

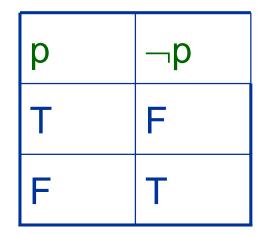
- York University is in Toronto
- York University is in downtown Toronto
- All students at York are Computer Sci. majors

Not propositions:

- Do you like this class?
- There are x students in this class.

Propositions - 2

- Truth value: True or False
- Variables: p,q,r,s,...
- Negation:
- ¬p ("not p")
- Truth tables



Caveat: negating propositions

 $\neg p$: "it is not the case that p is true"

p: "it rained more than 20 inches in TO"p: "John has many iPads"

Practice: Questions 1-7 page 12. Q10 (a) p: "the election is decided"

Conjunction, **Disjunction**

- Conjunction: p \langle q ["and"]
- Disjunction: $p \lor q$ ["or"]

р	q	p∧q	$p \lor q$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	F

Examples

Q11, page 13 p: It is below freezing q: It is snowing

(a) It is below freezing and snowing(b) It is below freezing but not snowing(d) It is either snowing or below freezing (or both)

Exclusive OR (XOR)

- p ⊕ q T if p and q have different truth values, F otherwise
- Colloquially, we often use OR ambiguously – "an entrée comes with soup or salad" implies XOR, but "students can take MATH XXXX if they have taken MATH 2320 or MATH 1019" usually means the normal OR (so a student who has taken both is still eligible for MATH XXXX).

Conditional

- $p \rightarrow q$ ["if p then q"]
- p: hypothesis, q: conclusion
- E.g.: "If you turn in a homework late, it will not be graded"; "If you get 100% in this course, you will get an A+".
- <u>TRICKY</u>: Is $p \rightarrow q$ TRUE if p is FALSE? **YES!!**
- Think of "If you get 100% in this course, you will get an A+" as a promise – is the promise violated if someone gets 50% and does not receive an A+?

Conditional - 2

- $p \rightarrow q$ ["if p then q"]
- Truth table:

р	q	$p \rightarrow q$	$\neg p \lor q$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Note the truth table of $\neg p \lor q$

EECS 1028, Winter 2015

Logical Equivalence

- $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent
- Truth tables are the simplest way to prove such facts.
- We will learn other ways later.

Contrapositive

- Contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- Any conditional and its contrapositive are logically equivalent (have the same truth table) – Check by writing down the truth table.
- E.g. The contrapositive of "If you get 100% in this course, you will get an A+" is "If you do not get an A+ in this course, you did not get 100%".

E.g.: Proof using contrapositive

Prove: If x^2 is even, x is even

- Proof 1: x² = 2a for some integer a.
 Since 2 is prime, 2 must divide x.
- Proof 2: if x is not even, x is odd. Therefore x² is odd. This is the contrapositive of the original assertion.

Converse

- Converse of $p \rightarrow q$ is $q \rightarrow p$
- Not logically equivalent to conditional
- Ex 1: "If you get 100% in this course, you will get an A+" and "If you get an A+ in this course, you scored 100%" are not equivalent.
- Ex 2: If you won the lottery, you are rich.

Other conditionals

Inverse:

- inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$
- How is this related to the converse?
 Biconditional:
- "If and only if"
- True if p,q have same truth values, false otherwise. Q: How is this related to XOR?
- Can also be defined as $(p \rightarrow q) \land (q \rightarrow p)$

Example

• Q16(c) 1+1=3 if and only if monkeys can fly.

Readings and notes

- Read pages 1-12.
- Think about the notion of truth tables.
- Master the rationale behind the definition of conditionals.
- Practice translating English sentences to propositional logic statements.

Next

Ch. 1.2, 1.3: Propositional Logic - contd

- Compound propositions, precedence rules
- Tautologies and logical equivalences
- Read only the first section called "Translating English Sentences" in 1.2.

Compound Propositions

- Example: p \wedge q \vee r : Could be interpreted as (p \wedge q) \vee r or p \wedge (q \vee r)
- precedence order: ¬ ∧ ∨ → ↔ (IMP!) (Overruled by brackets)
- We use this order to compute truth values of compound propositions.

Tautology

- A compound proposition that is always TRUE, e.g. $q \vee \neg q$
- Logical equivalence redefined: p,q are logical equivalences if p ↔ q is a tautology. Symbolically p = q.
- Intuition: p ↔ q is true precisely when p,q have the same truth values.

Manipulating Propositions

- Compound propositions can be simplified by using simple rules.
- Read page 25 28.
- Some are obvious, e.g. Identity, Domination, Idempotence, double negation, commutativity, associativity
- Less obvious: Distributive, De Morgan's laws, Absorption

Distributive Laws

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Intuition (not a proof!) – For the LHS to be true: p must be true and q or r must be true. This is the same as saying p and q must be true or p and r must be true.

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Intuition (less obvious) – For the LHS to be true: p must be true or both q and r must be true. This is the same as saying p or q must be true and p or r must be true.

Proof: use truth tables.

De Morgan's Laws

 $\neg(q \lor r) \equiv \neg q \land \neg r$

Intuition – For the LHS to be true: neither q nor r can be true. This is the same as saying q and r must be false.

 $\neg (q \land r) \equiv \neg q \lor \neg r$ Intuition – For the LHS to be true: $q \land r$ must be false. This is the same as saying q or r must be false.

Proof: use truth tables.

Using the laws

- Q: Is $p \rightarrow (p \rightarrow q)$ a tautology?
- Can use truth tables
- Can write a compound proposition and simplify

Inference in Propositional Logic

- in Section 1.6 pages 71-75
- Recall: the reason for studying logic was to formalize derivations and proofs.
- How can we infer facts using logic?
- Simple inference rule (Modus Ponens) :
 From (a) p → q and (b) p is TRUE,
 we can infer that q is TRUE.

Modus Ponens continued

Example:

- (a) if these lecture slides (ppt) are online then you can print them out
- (b) these lecture slides are online

Can you print out the slides?

• Similarly, From $p \rightarrow q$, $q \rightarrow r$ and p is TRUE, we can infer that r is TRUE.

Inference rules - continued

- ((p \rightarrow q) \land p) \rightarrow q is a TAUTOLOGY.
- Modus Tollens, Hypothetical syllogism and disjunctive syllogism can be seen as alternative forms of Modus Ponens
- Other rules like
 - "From p is true we can infer $p \lor q$ " are very intuitive

Inference rules - continued **Resolution: From** (a) $p \lor q$ and (b) $\neg \mathbf{p} \vee \mathbf{r}$, we can infer that $q \vee r$ **Exercise:** check that $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$ is a TAUTOLOGY. Very useful in computer generated proofs.

Inference rules - continued

- Read rules on page 72.
- Understanding the rules is crucial, memorizing is not.
- You should be able to see that the rules make sense and correspond to our intuition about formal reasoning.

Limitations of Propositional Logic

- What can we NOT express using predicates?
 - Ex: How do you make a statement about all even integers?

If x >2 then $x^2 > 4$

• A more general language: Predicate logic (Sec 1.4)