Subsets

- $A \subseteq B$: $\forall x (x \in A \rightarrow x \in B)$ Theorem: For any set S, $\phi \subseteq S$ and $S \subseteq S$.
- Proper subset: $A \subset B$: $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$
- Power set P(S) : set of all subsets of S.
- P(S) includes S, ϕ .
- Tricky question What is $P(\phi)$?

 $P(\phi) = \{\phi\}$ Similarly, P($\{\phi\}$) = { ϕ , { ϕ }}

Set operations

- Union $A \cup B = \{ x \mid (x \in A) \lor (x \in B) \}$
- Intersection A \cap B = { x | (x \in A) \land (x \in B)} Disjoint sets - A, B are disjoint iff A \cap B = ϕ
- Difference A B = {x | $(x \in A) \land (x \notin B)$ } Symmetric difference
- Complement A^c or $\overline{A} = \{x \mid x \notin A\} = U A$
- Venn diagrams

Laws of set operations

- Page 130 Remember De Morgan's Laws and distributive laws.
- Proofs can be done with Venn diagrams. E.g.: $(A \cap B) \circ = A^c \cup B^c$

Proofs via membership tables (page 131)

Introduction to functions

- A function from A to B is an assignment of exactly one element of B to each element of A.
- E.g.:
- Let A = B = integers, f(x) = x+10
- Let A = B = integers, $f(x) = x^2$ Not a function
- A = B = real numbers $f(x) = \sqrt{x}$
- A = B = real numbers, f(x) = 1/x

Terminology

- A = Domain, B = Co-domain
- f: A \rightarrow B (not "implies")
- range(f) = {y| $\exists x \in A f(x) = y$ } $\subseteq B$
- int floor (float real) { ... }
- $f_1 + f_2, f_1 f_2$
- One-to-one INJECTIVE
- Onto SURJECTIVE
- One-to-one correspondence BIJECTIVE

Proving injection (pg 142)

Property : A function is injective if and only if $f(a) \neq f(b)$ whenever $a \neq b$

Proving injection - Show that if f(a) = f(b)then a=b Example: f(x) = 2x+1, $f(x) = x^3$ Proving surjection (pg 143) Property: If f:A \rightarrow B, for any b \in B, there must exist a \in B, f(a) = b

Proving surjection - consider an arbitrary $b \in B$. Find a such that f(a) = b.

Example: f(x) = 2x+1, $f(x) = x^3$

Bijective functions (pg 144)

- Both injective and surjective
- A bijective function is invertible
- Inverse: $f^{-1}(y) = x \text{ iff } f(x) = y$
- $f^{-1}(x) \neq 1/f(x)$

Operations with functions

• Addition:

Example: f(x) = 2x, $g(x) = x^2 + 1$

• Composition: If f: A \rightarrow B, g: C \rightarrow A, then f ° g: C \rightarrow B, f°g(x) = f(g(x))

Example: f(x) = 2x, $g(x) = x^2 + 1$