Implementing Static
Features

Motivation

» You want to produce a software product that
is to be used in many different countries

» Many different systems of measurement; for

example

» Distance: metre/kilometre versus yard/mile

» Volume: teaspoon/tablespoon/cup versus
millilitre/litre

» Force: Newton versus pound-force

» Currency: CAD versus USD versus EUR

Errors in Converting Units

» Errors in converting units can have
catastrophic consequences
» http://lamar.colostate.edu/~hillger/unit-mixups.html

http://lamar.colostate.edu/~hillger/unit-mixups.html

Designing a Class to Convert

Distances

» Design a class to convert between kilometres
and miles

» What attributes are needed?

» Number of kilometres per mile

» Note: the number of kilometres in a mile never
changes; it is genuinely a constant value

» Attributes that are constant have all uppercase names

DistanceUtility
KILOMETRES PER_MILE : double attribute type

Review: Java Class
» A class is a model of a thing or concept

» In Java, a class is the blueprint for creating
objects

» Attributes

» The structure of an object; its components and the
information (data) contained by the object

» Methods
» The behaviour of an object; what an object can do

Designing a Class

» To decide what attributes and methods a class
must provide, you need to understand the
problem you are trying to solve

» The attributes and methods you provide depends
entirely on the requirements of the problem

video game person dating service person
class name» Person Person
appearance age
attributes » voice photograph
draw() compatibleWith(Person)
talk() contact ()

Utilities
» In Java, a utility class is a class having only
static attributes and static methods

» Uses:
» Group related methods on primitive values or arrays
jJava. lang.Math or Java.util _Arrays

» Group static methods for objects that implement an
interface
Java.util_Collections

» Group static methods on a Final class
» More on this when we talk about inheritance

UML Class Diagram for Utilities

< utility >>
DistanceUtility

KILOMETRES_PER_MILE : double

kilometresToMiles(double) : double
kilometresToMiles(double[]) : double[]
milesToKilometres(double) : double

+ + +| +

» Class name preceded by << utility >>

» + means public (- means private)

» Attributes: type

» Methods: parameters and return type

General Class Structure

// any needed package statement
// any needed import statements

public class SomeName
{

// the attribute section

// the constructor section

// the method section

Version 1

public class DistanceUtility
{
// attributes
public static final
double KILOMETRES_PER_MILE = 1.609344;

10

Attributes

public static final
double KILOMETRES PER_MILE = 1.609344;

» An attribute is a member that holds data
» A constant attribute is usually declared by

specifying
1. modifiers
1. access modifier public
2. static modifier static
3. final modifier final
2. type double
3. hame KILOMETRES PER MILE

4. value 1.609344

11

Attributes

» Attribute names must be unique in a class
» The scope of an attribute is the entire class
» JBA] and [notes] call public attributes fields

12

public Attributes

» A public attribute is visible to all clients

public class NothingToHide
{

public Int x; // always positive
3
// client of NothingToHide

NothingToHide h = new NothingToHide();
h.x = 100;
» public attributes break encapsulation

» A NothingToHide object has no control over the value
of x

» Clients can put a NothingToHide object into an
invalid state

Ih.x = -500; // X not positive

13

public Attributes

» A public attribute makes a class brittle in the
face of change

public class NothingToHide
{

private int x; // always positive
+

// existing client of NothingToHide
NothingToHide h = new NothingToHide();
h.x = 100; // no longer compiles

» public attributes are hard to change
» They are part of the class API

» Changing access or type will break existing client
code

14

public Attributes

» Avoid public attributes in production code
» Except when you want to expose constant value types

15

static Attributes

» An attribute that is static is a per-class
member

» Only one copy of the attribute, and the attribute is
associated with the class

» Every object created from a class declaring a static
attribute shares the same copy of the attribute

» Textbook uses the term static variable
» Also commonly called c/ass variable

16

static Attribute

64
» DistanceUtility u = u
b new DistanceUtility();
» DistanceUtility v =
3 new DistanceUtility();
500
KILOMETRES PER MILE
belongs to class —
no copy of 1000
KILOMETRES PER_MILE 297
1100

277

static Attribute Client Access

» A client should access a public static
attribute without requiring an object

» Use the class name followed by a period followed by
the attribute name

// client of DistanceUtility
double kmPerMi = Distance.KILOMETRES PER_MILE;

18

static Attribute Client Access

v It is legal, but considered bad form, to access
a public static attribute using an object

// client of DistanceUtility; avoid doing this
DistanceUtility u = new DistanceUtility();
double kmPerMi = u.KILOMETRES PER MILE;

19

new DistanceUtility Objects

» Our DistanceUtility APl does not expose a
constructor

but
DistanceUtility u = new DistanceUtility();
is legal

» If you do not define any constructors, Java will
generate a default no-argument constructor for you

20

Preventing Instantiation

» Our DistanceUtility APl exposes only
static constants (and methods later on)
» Its state is constant

» There is no benefit in instantiating a
DistanceUtility object

» A client can access the constants (and methods)
without creating a DistanceUtility object

double kmPerMi = DistanceUtility.KILOMETRES PER_MILE;

» Can prevent instantiation by declaring a
private constructor

21

Version 2 (prevent instantiation)
public class DistanceUtility

{

/] attributes
public static final double KILOMETRES_PER_MILE = 1.609344;

// constructors

/] suppress default ctor for non-instantiation
private DistanceUtility()

i

22

private

» private attributes, constructors, and
methods cannot be accessed by clients
» they are not part of the class API

» private attributes, constructors, and
methods are accessible only inside the scope
of the class

» A class with only private constructors
indicates to clients that they cannot use new
to create instances of the class

23

final Attributes

» An attribute (or variable) that is final can
only be assigned to once

» public static final attributes are typically
assigned when they are declared

public static final double
KILOMETRES PER _MILE = 1.609344;

» public static final attributes are intended to be
constant values that are a meaningful part of the
abstraction provided by the class

24

final Attributes of Primitive
Types

» Final attributes of primitive types are

public class AlsoNothingToHide

{
public static final Int x = 100;

}

// client of AlsoNothingToHide

AlsoNothingToHide.x = 88; // will not compile;
// attribute i1s final and

// previously assigned

final Attributes of Immutable
Types

>

final attributes of immutable types are constant

public class StillINothingToHide
{

}

public static final String x = '‘peek-a-boo";

// client of StillNothingToHide
StilINothingToHiIde.x = "1-see-you"';
// will not compile;
// attribute 1s final
// previously assigned

and

Also, String is immutable
» It has no methods to change its contents

26

final Attributes

» Avoid using mutable types as public constants.

27

final Attributes of Mutable Types

» Final attributes of mutable types are not
logically constant; their state can be changed

public class LastNothingToHide
{
public static final ArrayList<Integer> x =
new ArrayList<lnteger>();

}

// client of LastNothingToHide
ArrayList<Integer> y = new ArrayList<Integer>();
LastNothingToHide.x = vy; // will not compile;
// attribute i1s final and
// previously assigned

LastNothingToHide.x.add(10000);
// works!

28

Version 3 (with methods)

public class DistanceUtility

{

public static final double KILOMETRES_PER_MILE = 1.609344;

private DistanceUtility()
{}

// methods
public static double kilometresToMiles(double km)

{
double result = km / KILOMETRES_PER_MILE;

return result;

}

29

Methods

public static double kilometresToMiles(double km)

» A method is a member that performs an action

» A method has a sighature (name + number and
types of the parameters)

name number and types of parameters

A |
kilometresToMi les(double)

\)
|

signature

» All method signatures in a class must be unique

30

Methods

public static double kilometresToMiles(double km)

» A method returns a typed value or void

double
» Use return to indicate the value to be returned

public static double kilometresToMiles(double km)

1
double result = km / KILOMETRES_PER_MILE;

return result;

}

31

Parameters

» Sometimes called formal parameters
» For a method, the parameter names must be
unique

» The scope of a parameter is the body of the
method

32

static Methods

» A method that is static is a per-class
member
» Client does not need an object to invoke the method
» Client uses the class name to access the method

double miles = DistanceUtility.kilometresToMiles(100.0);

» static methods are also called c/lass method's

» A static method can only use static attributes of
the class

33

Invoking Methods

» A client invokes a method by passing
arguments to the method

» The types of the arguments must be compatible with
the types of parameters in the method signature

» The values of the arguments must satisfy the
preconditions of the method contract [JBA 2.3.3]

double kilometres = 100.0;
double miles = 0.0;
miles = DistanceUtility.kilometresToMiles(kilometres);

arguments

84
ki lometres
miles

34

Arguments vs. Parameters

» Arguments are passed in a method call
» Parameters are accessed within the method

int x = 8;
int y = 10;
int max = Foo.max(x, y); // x and y are arguments

public static int max(int a, int b) // in class Foo

{

return a > b ? a: b; // a and b are parameters

// where a=x and b=y

35

Attribute Shadowing

» What if a parameter and attribute share the
same name?

» Parameter takes priority

public class Foo

{

static int count; // attribute

public static void increment (int count)

{

count = count + count; // changes parameter, not attribute
Foo.count = Foo.count + count; // changes attribute

// this.count if Foo were not a Utility class

36

Pass—-by-value with Primitive Types

» An invoked method runs in its own area of
memory that contains storage for its
parameters

» Each parameter is initialized with the value of
its corresponding argument

miles = o] . public static double
DistanceUtility._kilometresToMiles(kilometresToMiles(double km)
kilometres);

550

84

kilometres parameter km km

gets the value of
argument result
kilometres

miles

37

Pass—-by-value with Primitive Types

» The method body runs and the return value is
computed

» The return value is then copied back to the
caller

miles = o] . public static double
DistanceUtility._kilometresToMiles(kilometresToMiles(double km)
kilometres);

550

84

kilometres value of km

result

gets copied result
into

miles

miles

38

Pass—-by-value with Primitive Types

» The argument ki lometres and the parameter
km have the same value but they are distinct
variables

» When DistanceUtility.KilometresToMiles()
changes the value of km the value of ki lometres

does not change public static double
miles = kilometresToMiles(double km){
DistanceUtility._kilometresToMiles(km /= KILOMETRES PER_MILE;
kilometres); return km;
+

550

kilometres km
does not
change

ki lometres

miles

39

Pass-by-value with Reference
Types

» Java uses pass-by-value for primitive and
reference types

public class Doubler
{ // attributes and constructors not shown
public static void twice(Rectangle x)

{

x.setWidth(2 * x.getWidth());
X.setHeight(2 * x.getHeight());

40

Pass-by-value with Reference
Types

valueof risa
reference to the

» r = new Rectangle(3,4);"

» Doubler.twice(r); Rectangle object
500
width
height
600
X parameter X

gets the value
of argument r
(a reference)
41

Pass-by-value

» Java uses pass-by-value for primitive and
reference types

» An argument of primitive type cannot be changed by
a method (e.g., no swapping of ints)

» An argument of reference type can have its state
changed by a method

42

Version 4 (Javadoc) 1

/*7‘:
* The class <code>DistanceUtility</code> contains constants and
* methods to convert between kilometres and miles.

*

* @author EECS1030
*/
public class DistanceUtility
{
/~,'<~,'<
* The number of kilometres in a mile.
*/
public static final double KILOMETRES_PER_MILE = 1.609344;

43

Version 4 (Javadoc) 2

/7’:7‘:
* Converts distances in kilometres to miles.
* @param km The distance to convert. If <code>km</code> is
* negative then the returned distance is also negative.
* @return Distance in miles.
7‘</
public static double kilometresToMiles(double km)
{
double result = km / KILOMETRES_PER_MILE;
return result;

}

44

Overloadi NQJ kilometresToMiles ()

» Suppose we want to provide a method to convert
many values stored in an array from kilometres to
miles

» We can provide another method called
kilometresToMiles() as long as the signature is different

» Providing multiple methods with the same name

but different signatures is called method
overloading

» The intent of overloading is to provide flexibility
in the types of arguments that a client can use

45

Version 4 (overload a method)

public class DistanceUtility

{

// attributes and constructors; see Version 2 or 2a ...

// methods
public static double kilometresToMiles(double km)
{ // see version 3}

public static double[] kilometresToMiles(double[] km)
{

double[] miles = new double[km.length];
for(inti = 0; i < km.length; i++)
{

miles[i] = kilometresToMiles(kmli]); // good!

}

return miles;

46

Method Overloading

» Simple rule

» A class can define multiple methods with the same
name as long as the signatures are unique

// DistanceUtility examples
kilometresToMiles(double)
kilometresToMiles(double[])

// String examples

String()

String(char[] value)

String(char[] value, 1nt offset, Int count)

47

Overloading 1

» Everything other than the signature is ignored
in determining a legal overload

// i1llegal; parameter names not part of signature
// add this to DistanceUtility: legal or i1llegal?
public static double kilometresToMiles(double kilos)

48

Overloading 2

// i1llegal; access modifier not part of signature
// legal or i1llegal?
private static double kilometresToMiles(double km)

49

Overloading 3

// i1llegal; static modifier not part of signature
// legal or i1llegal?
public double kilometresToMiles(double km)

50

Overloading 4

// i1llegal; return type not part of signature
// legal or i1llegal?
public static float kilometresToMiles(double km)

51

Overloading 5

// legal; parameter type i1s part of signature
// legal or i1llegal?
public static float kilometresToMiles(float km)

{
// this works

return (float)(km /7 KILOMETRES_PER_MILE);

}

52

Overloading 5a

// implemented in terms of kilometresToMiles(double)
//

public static float kilometresToMiles(float km)
{

// but this might be better
return (float) kilometresToMiles((double) km);

}

53

Selection of Overloaded Methods
(i.e., Binding)

» Loosely speaking, the compiler will select the
method that most closely matches the number

and types of the arguments
» “The rules that determine which overloading is
selected are extremely complex. They take up
thirty-three pages in the language specification [JLS,
15.12.1-3], and few programmers understand all of
their subtleties.”
» Effective Java, Second Edition, p 195.

54

Selection Examples

// from java.lang.Math

Math.abs(-5): // Math.abs(int a)
Math.abs(-5f): // Math.abs(float a)
Math.abs(-5.0); // Math.abs(double a)
Math.max(1, 2); // Math_max(int a, int b)
Math.max(1.0, 2.0); // Math_max(double a, double b)
Math.max(1, 2.0); // Math.max(double a, double b)

) U 4

no exact match for Math.max(int, double)
but the compiler can convert int to double
D to match Math.max(double, double)

55

Ambiguous Overloads

public class Ambiguous

! public static void f(int a, double b)
{ System.out.println("f int double");
|}oublic static void f(double a, int b)
{ System.out.printin("f double int");
|}oublic static void main(String[] args)
{

f(1,2); // Compilation error:
/] “reference to f is ambiguous, both methods
/] f(int,double) and f(double,int) match”

56

Confusing Overload

import java.util.*;

public class SetList
{

public static void main(String[] args)

{
Set<Integer> set = new TreeSet<Integer>();
List<Integer> list = new ArrayList<Integer>();
// fill set and list with -3, -2, -1,0, 1, 2

for(inti =-3;i<3;i++)
{

set.add(i); list.add(i);

}

System.out.printin("before " + set + " " + list);

[Effective Java, Second Edition, p 194]

57

Confusing Overload

// remove O, 1, and 2?
for(inti =0;i < 3;i++)

{

set.remove(i); list.remove(i);

}

System.out.printin("after " + set + " " + list);

[Effective Java, Second Edition, p 194]

58

Confusing Overload Explained 1

before [-3, -2, -1, O, 1, 2] [-3, -2, -1, O, 1, 2]
after [-3, -2, -1] [-2, O, 2]

» set and 1ist are collections of Integer
» Calls to add autobox their int argument

set.add(1); // autobox Int 1 to get Integer
list.add(i1); // autobox iInt 1 to get Integer

» Calls to Treeset remove also autobox their int
argument

set.remove(1); // autobox Int 1 to get Integer

59

Confusing Overload Explained 2

» However, ArrayList has an overloaded remove method

remove(int i1ndex)

Removes the element at the specified position in this list.

» Therefore, 1list.remove(i) matches the int version of
remove() instead of the Integer version of remove(Q)

list.remove(0); // [-3 -2, -1, 0, 1, 2]
list.remove(1); // [-2, -4 O, 1, 2]
list.remove(2); // [-2, 0, 15 2]

60

Interfaces and Generics as
Parameters

» When specifying parameters for a method, one
can use interfaces instead of classes as long as
the interface declares the required functionality

- This allows for passing of objects from any
implementing class

- Can allow for a type of collection (e.g., a Map) instead
of an implementation (e.g., a TreeMap)

‘&f public static int freg(List<Long> 1list)
instead of
x public static 1nt freg(ArrayList<Long> list)

61

Interfaces and Generics as
Parameters (2)

» If the parameterized type (e.qg., the type of
element in a collection) is not known (or does
not matter), one can specify a generic type
> Typically written as “E", “T", “K”, or “V”
> Can also be used to describe the return type

public static <T> int freg(List<T> list)
- Declares <T> as the type in the generic method “freq”

public static <T> T getlLargest (List<T> 1list)

- <T> declares “freq” as a generic method, and its return
type is also an object of type T

62

Interfaces and Generics as
Parameters (3)

» Sometimes, restrictions are required on the
type (e.g., elements must be comparable)

public static <T extends Comparable<T>>
boolean smaller (List<T> list)

> T must implement Comparable directly

public static <T extends Comparable<? super T>>
boolean smaller (List<T> list)

> Allows T if it (or one of its superclasses)
implements Comparable directly

63

What to do About Invalid

Arguments
» AS the author of a class, you have control over

how your method is implemented

» What you cannot control is the value of the
arguments that clients pass in

» A well written method will

1. Specify any requirements the client must meet with
the arguments it supplies — preconditions

2. Validate the state of any arguments without
preconditions and deal gracefully with invalid
arguments — validation

64

Preconditions

» If @ method specifies a precondition on one of
its parameters, then it is the client's
responsibility to make sure that the argument it
supplies satisfies the precondition

» If a precondition is not satisfied then the method can
do anything (such as throw an exception, return an
incorrect value, behave unpredictably, ...)

» For our method possible preconditions are:

» km must not be null

» km.length > O
» Note that the second precondition is more restrictive than the first

65

ol
RANRAY

* Converts distances in kilometres to miles for arrays.

* If an element of the array argument is negative the
corresponding element of the returned array is also
negative.

b

s
"

kS

@param km The distances to convert.

* @pre. <code>km.length > 0</code>

* @return Distances in miles in an array with

* <code>length == km.length</code>.

*/

public static double[] kilometresToMiles(double[] km)

66

Validation

» Alternatively, the class implementer can relax
preconditions on the arguments and validate
the arguments for correctness

» The implementer assumes the responsibility
for dealing with invalid arguments

» Must check, or validate, the arguments to confirm
that they are valid

» Invalid arguments must be accommodated in a way
that allows the method to satisfy its postconditions

» In our example, a possible return value for a
null array is a zero-length array

67

N
*
*

SR T T S T S

*/

Converts distances in kilometres to miles for arrays.
IT an element of the array argument i1s negative the
corresponding element of the returned array i1s also

negative.

@param km The distances to convert.

@return

Distances in miles 1In an array with
<code>length == km.length</code>. If the
array argument i1s <code>null</code> then a
zero-length array is returned.

68

public static double[] kilometresToMiles(double[] km)

{

double[] miles = null;

if (km == null) {
miles = new double[0];

}

else {
miles = new double[km.length];
for(inti = 0; i < km.length; i++) {

miles[i] = kilometresToMiles(kmli]);

}

}

return miles;

}

69

Loop Invariant

» A Boolean expression that is true (i.e., holds)
at the beginning of every iteration of the loop

» Does not necessarily appear in code

» Typically derived for testing purposes and to
prove correctness

70

Loop Invariant (2)

int pow = 1;

int 1 = 0;

while (1 < exponent)
{

pow = pow * base;
i++;

}

return pow;

» Invariants:
ci>=0
o | <= exponent
°© POW == base

71

Testing

» Imperative to test utility (and all) classes for
correctness
» Compare calculated output with expected

output
> |dentical result 2> test passed
- Different result - test failed

» Testing requires multiple test cases to ensure
correct operation under various condition
with various inputs

» Example: Test kilometresToMiles method

72

Testing (Testing Class)

public class DistUtilTester

{

public static void main(String[] args)

{

double input = 2;
double expected = 1.24274238; // used calculator as oracle

double actual = DistanceUtility.kilometresToMiles (input) ;
double epsilon = 0.000001;

if (Math.abs (actual - expected) < epsilon)
{
System.out.println (“passed”) ;

}

else

{
System.out.println(“failed”);

73

Testing (JUnit in Eclipse)

fFiIe Edit Run Scurce Mavigate Search Project Refactor Window Help

ﬁﬁ'

Mew

Open File...

Close

Close All

Save
Save As..,
Save All

Revert

Mowe...
Rename...
Refresh

Convert Line Delimiters To

Print...

Switch Workspace
Restart

Alt+5hift+M »

Ctrl+W
Ctrl+Shift+W

Ctrl+5

Ctrl+5hift+5

F2
F5

Ctrl+P

2% Java Project

@ Android Application Project

i Project...

HY Package

(5 Class

€ Interface

& Enum

{@ Annotation

&% Source Folder
J.i—?] Java Working Set
(% Folder

= =
LY File

|2/ Untitled Text File

E{" IUnit Test Case

74

Testing (JUnit in Eclipse) (2)

- - - - - B -
& New JUnit Test Case _—— o Elﬁg & New JUnit Test Case D G Gain=
JUnit Test Case ‘ Test Methods
(1, The use of the default package is discouraged. E: Select metheds for which test method stubs should be cre
() Mew JUnit 3 test @ Mew JUnit 4 test Awailable methods:
Source folder: 1030/=rc Browse...
Package: (default) Browse...
Superclass: Javalang.Object Browse.

Which method stubs would you like to create?
[[] setUpBeforeClass() [7] tearDownAfterClass()
[setUp() [7] tearDown()
constructor
Do you want to add comments? (Configure templates and default value here)

[7] Generate cormments

Distanceltility

Class under tes|

1 method selected.

[] Create final method stubs
[T] Create tasks for generated test methods

® < Back Mext =] | Finish | ’ Cancel @ Next > [

Testing (JUnit in Eclipse) (3)

@Test
public void testKilometresToMiles ()

{

double
double
double
double

input = 2;

expected = 1.24274238; // calculator as oracle
actual = DistanceUtility.kilometresToMiles (input) ;
epsilon = 0.000001;

assertEquals ("Actual and expected values exceed epsilon!"

expected, actual, epsilon);

76

Eile Edit | Bun | Source Refactor Mavigate

Testing (JUnit in Eclipse) (4)

Search Project Window Help

r~ E® Run
R %, Debug
Run History
Run As

E:4 Packag

=L Ch Run Cenfigurations...
(=23 -

2 Pac.. gulunit 22 0 Qutl. = O

g° BE| @ R e -

DistlUitilTest

]

Runs: 1/1 B Errors: 0 B Failures: 0

4) DistUtilTest [Runner: JUnit 4] (0.000 s)|
Elb—'—_l testKilometresToMiles (0,000 =)

v

Cr+Fll k- Q- Q- B G~ (@

F11

2 Pac.. gulunit i2 g Outl. = O

4 v aRE| QR W EH~ ¥

Finished after 0.015 seconds

Runsz: 1/ B Errors: 0 B Failures: 1

4 |fc] DistUtilTest [Runner: JUnit 4] (0.000 s)|
E testkilometresToMiles (0,000 =)

77

