
‘.2 Case Study: Object Serialization
In all the applications seen so far, all objects were creat
ed and used as the program was running. But there are

SitUations in which objects may need to be created in

one run and used in another. Here are some scenarios:

g After creating a collection and adding elements

to it, the user may want to quit the program for

the day and come back the next day to resume

working. The user expects that all elements will

remain available on the next day, and in the

same state.
I After creating an object through a program, the

user may want to be able to launch another

program to process the object created in the

first; that is, the second app must be able to

access objects created by the first.

culminates in a set of binary data that captures the

state of the object. Given this data, and the classes of

which the object and its attributes are instances, we

should be able to reconstitute the object. This reverse

process is called deserialization.

Java comes with ready-made components that

implement both processes. The class

java . io .Obj ectOutputStreatn

is responsible for serialization. Its constructor takes an

OutputStrearn as a sink (a place to which the data

should be written). Hence, if we want to serialize an

object to a disk file, we provide a file as a sink:

FileOutputStream fos = new
FileOutputStream(filename);

ObjectcutputStream oos = new
ObjectOutputStream(fos);

The key method in the class is

void writeObject (Object obj)

Thanks to the object hierarchy and the substitutability

principle, this method accepts any object type param

eter. As an example, given an instance gc of

GlobalCredit, a collection of CreditCard

objects, we can serialize it as follows:

oos .writeObject (gc);
oos . close 0;

Note that go may contain thousands of credit cards
and that each credit card aggregates two dates and a

After creating an object through a program, the

user may want to be able to share it with some

one else; that is, make the created object acces

sible to a remote location.

All these scenarios can be realized if we can some

how “save” objects in some persistent storage, one that

does not disappear when our program ends. This

means we need to write code that writes all the attrib

utes of the object to a disk file. Primitive attributes can

easily be written, but non-primitive attributes need to

be handled recursively. This is because an object attrib

ute of a class refers to another class and that class may

itself have object attributes, and so on. This recursion

will ultimately yield primitive or string data. This

complex process is called serializing the object, and it

host of attributes, yet this simple invocation will Store

everything in the file. The process can be reversed with
the help of the class:

java. io .Obj ectlnputStream

Here is a fragment that deserializes the collection:

FilelnputStream fis = new
FilelnputStream(filename);

ObjectlnputStream ois = new
ObjectlnputStream(fis);

gc = (GlobaiCredit)
ois .readObjectQ;

ois close 0;

Note that the readObject method returns an
Obj ect; hence, the return must be cast to the proper
type before the application can use the deserialized
object. This is a weak point in the process because the
cast may lead to a runtime error when the actual type
of the serialized object is different from, and not a sub

class of, the cast type. It is therefore prudent to check
the type before casting:

if (ois.readObject() instanceof
GlobaiCredit)

The object stream methods throw several types of

exceptions, and until we learn how to handle them
(Chapter 11), we must add a suffix to our main

method:

public static void main(String[]
args) throws Exception


