
Laboratory Assignment 4 
 

Fourier Sound Synthesis 
 
PURPOSE 
 
This lab investigates how to use a computer to evaluate the Fourier series for periodic 
signals and to synthesize audio signals from Fourier series coefficients. The Fourier 
series should be a familiar mathematical concept. We show how to use the DFT (Discrete 
Fourier transform) to compute the Fourier series for digital sound synthesis.  Using a 
computer, we can determine the Fourier series coefficients for an arbitrary periodic signal 
corresponding to a sampled audio signal having a given pitch. Then similarly shaped 
waveforms having different fundamental frequencies, i.e., different pitch, can be 
generated to create interesting musical sounds. We explore how these sounds can be 
modified using ideal filters. 
 
 
4.1 OBJECTIVES 
 
 
By the end of this laboratory assignment, you should be able to: 
 
1. Synthesize a signal from a finite number of Fourier series coefficients. 
 
2. Compute Fourier series coefficients for an arbitrary periodic signal (that may not 
have an analytical solution). 
 
3. Perform and analyze basic ideal filtering operations on periodic signals. 
 
4.2 REFERENCES 
 
 
Review Topics 
 
 1. Fourier series analysis and synthesis 
 
Exploratory Topics 
 
 1. Discrete-time Fourier analysis and synthesis 
 2. Ideal filtering of arbitrary periodic waveforms 
 
Reference 
 
1. Deller, J. R. Jr. Tom, Dick, and Mary Discover the DFT. IEEE Signal Processing 
Magazine, April 1994 pg. 36-50 
 



4.3 LABORATORY PREPARATION 
 
Problems 
 
Question 1. Assume that a significant harmonic is defined to have a magnitude within 
50 dB of the magnitude of the highest harmonic. Using this figure of merit, how many 
harmonics are significant for a square wave? Use the analytic formulation for the FS of a 
square wave.  You may wish to review the definition of dB given in Laboratory 
Assignment 3. 
 
Question 2. Consider a signal that comprises only two harmonic components: the third 
harmonic, having a magnitude of two and an angle of irI4, and the fifth harmonic, having 
a magnitude of 1/2 and an angle of 3π/4. Construct 2 periods of this waveform, assuming 
that its fundamental frequency is 50 Hz. If an ideal lowpass filter is created to remove the 
fifth harmonic, what would be a reasonable cutoff frequency (in Hz)? 
 
Question 3. Given the waveform f(t) below, determine its Fourier series coefficients an 
analytically in terms of the integer index n, assuming it is periodic outside of the interval 
shown. 

 
Figure 4.3.1 Waveform for Problem 3 

 
What are the Fourier series coefficients for the signal resulting from filtering f(t) with an 
ideal LPF that has a cutoff frequency of 3.5o~, where o~ corresponds to the fundamental 
frequency of f(t)? 
 
Question 4. Verify that your Fourier series analysis from Question 3 is correct by 
plotting the waveform resulting from using the first four Fourier series coefficients. What 
happens to the waveform shape as you increase and decrease the number of Fourier series 
coefficients used in the approximation? Identify any differences between the Fourier 
series approximation and the original signal. Hypothesize, on the basis of your 
observations, as to whether these differences will disappear if enough of the harmonic 
frequencies are included in the approximation. Plot the magnitude of the first four Fourier 
series coefficients as a discrete-time sequence with the corresponding harmonic 
frequencies indicated on the horizontal axis. 
 
Question 5. Discuss whether the Fourier synthesis method described for the guitar 
could be applied to different types of instruments, e.g., a trumpet. Explain your 
reasoning. 



 
4.4 BACKGROUND 
 
Motivation for Frequency Analysis 
 
Much of signal processing, communication and control systems analysis relies upon 
frequency analysis of relevant signals and systems. Frequency response, bandwidth, and 
tone control on stereo systems are all concepts based on the idea that a signal can be 
thought of as comprising sinusoidal components at different frequencies. 
 
Traditional frequency analysis uses two basic transforms: the Fourier series, for periodic 
waveforms, and the Fourier transform, for aperiodic waveforms. In both cases the 
information from a signal is converted to a frequency-domain representation; instead of 
representing the information in the signal as a function of time, it is represented as a 
function of frequency. 
 
What does plotting the signal content as a function of frequency tell us? In a broad sense, 
it tells us at what frequencies the signal has energy, just as a prism visually shows the 
colors - frequencies—present in a light source, or a stereo spectrum analyzer shows the 
relative loudness of tones in a musical piece. Frequency analysis helps to understand 
other technologies as well. For example, the electric power in a standard wall outlet 
contains energy predominately at 60 Hz - AC power. A radio station broadcasts energy 
around its transmission frequency, which is indicated on your radio station dial. By 
transforming signal data to be viewed in the frequency domain, we can find out what 
frequencies are significant in a given signal. 
 
The behavior of systems also can be described using frequency-domain concepts. 
Systems are characterized by their frequency response, i.e., how they affect the frequency 
content of an input signal. For example, the tone control on a stereo (bass and treble 
knobs) has two effects: the bass knob controls the gain (relative loudness) on low-
frequency signal components, whereas the treble knob controls the gain on high-
frequency signal components. Examining the frequency content of a stereo signal before 
and after tone control can tell what the two knobs are doing. In a more general sense, the 
frequency response of any unknown system can be determined from the relative 
frequency content of signals at its input and output. 
 
This set of experiments deals with three concepts in the context of synthesizing and 
modifying audio sounds: calculation of the frequency information in arbitrary periodic 
signals via the Fourier series (FS); the effect of certain systems, called ideal filters, on the 
FS coefficients and the audio properties of signals; and determination of a system’s 
frequency response based on input and output signal Fourier series spectra. 
 
Why bother with the Fourier series at all? This mathematical representation provides a 
means for determining the frequency content of periodic signals. For a given periodic 
signal, the gain (magnitude) and time-shift (phase) of sinusoids at each harmonic 
frequency define the signal’s frequency spectrum. Knowing the frequency content of a 



signal allows you to determine how a signal will or should be modified by a physical 
system. In this lab, we investigate how systems affect the frequency content of a signal in 
the context of ideal filters having both periodic input and output signals that can be 
represented by their respective Fourier series. 
 
Scenario 
 
You are interested in getting hired by a small start-up company that develops multimedia 
application packages for entertainment and education. This company uses advanced 
digital audio processing in their products to produce high quality sound with low storage 
requirements, which is the main selling point for their products. You have researched the 
company’s products and financial status and are impressed. This company is interviewing 
on campus. Knowing that the competition is stiff for the single engineering position 
available, you would like to make a good impression. 
 
You have played around some with sound synthesis using simple tones and sampled 
sounds, but recognize the large storage requirements needed to produce high-quality 
music using only samples of digitized instrument sounds. You have heard of something 
called Fourier synthesis.  Recalling the Fourier series from your coursework, you wonder 
if these mathematical techniques are used in Fourier synthesis to develop methods for 
low-cost, high-quality digital sound synthesis. So you decide to explore how to use a 
computer to perform Fourier series analysis and synthesis to see what kinds of sounds 
you can create. 
 
Fourier Series and Discrete Fourier Series 
 
The Fourier series representation of a periodic signal should be a familiar concept from 
introductory engineering coursework. The main concept behind the FS is that periodic 
signals can be represented as a sum of sinusoidal signals, with the restriction that the 
resulting sum has the same fundamental frequency as the signal itself— i.e., the same 
periodicity. A classic example is the construction of a square wave from the FS 
coefficients; there is a MATLAB demo that does just this: type fourier in MATLAB to 
see the development. 
 
The FS is defined by two equations: an analysis equation, which, from the signal, 
determines the FS coefficients, and a synthesis equation, which defines how to construct 
the signal as a sum of sinusoids weighted by the FS coefficients. 
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In both equations (1) and (2), f0 = l/T, the fundamental frequency of the signal, T is the 
period of the signal, and the ak’s are the complex coefficients, each of which weights the 
kth harmonic (having frequency kf0). Note that since the above synthesis equation is 
expressed in terms of complex exponential functions, the index on the summation 
includes negative values so that the resulting sum defines sinusoids. (Recall that 
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+= .) Often the sign associated with the index is associated with the 
frequency; kf0, where k is negative results in a mathematical artifact called a negative 
frequency. 
 
Since the signals in which we are interested are real-valued functions of time, the Fourier 
coefficients form complex conjugate pairs, ak = (a-k)*. 
 
The Fourier series also can be expressed as a sum of sinusoids, 
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Note that the magnitude of each Fourier series coefficient determines the amplitude of the 
sinusoid at the corresponding harmonic frequency, and the phase of the FS determines the 
phase shift of the sinusoid. 
 
If the signal is sampled to yield a discrete-time signal, we can use the discrete Fourier 
Series for analysis and synthesis. In this case, integration is replaced by summation in the 
FS analysis equation, and the signal periodicity is expressed in terms of an integer 
number of samples N rather than time T. 
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Note that in the discrete case only a finite number of DFS coefficients are used. Since the 
data is sampled, there is a restriction on the frequencies that can be represented, limited to 
half of the sampling rate. This gives a maximum discrete-time frequency of Ω = πkN, 
corresponding to a continuous-time frequency of ω = Ω/Ts where Ts is the sampling 
period. The remaining terms in the sum correspond to the negative frequencies values, 
shifted by +2π, as needed to create sinusoids from complex exponentials. 
 
These two equations are readily implemented in MATLAB: simply write a script that 
evaluates the sums for all n and k values. There are, however, more efficient methods for 
computing the DFS using Fast Fourier Transforms (FFT), which will be discussed later. 
 
Interpreting Fourier Series 
 



So now we have a set of Fourier series coefficients for a signal, and we can recreate the 
signal from its coefficients. What does this mean? 
 
We are interested in knowing a few things about a signal: what range of frequencies does 
it contain? Which of these have the most energy? How much energy is stored in a 
particular frequency? How can the signal be changed by altering its frequency content? 
The FS representation provides us with a means for answering these questions. 
 
To help answer these questions, we can plot the magnitude of the FS coefficients as a DT 
sequence where the horizontal axis is used to indicate the harmonic frequency (kf0) 
associated with each coefficient. Consider the FS representation of a periodic square 
wave, which is commonly used as an example in lecture or as homework. It contains only 
odd harmonics (k = 1, 3, 5, etc.) and the amplitude of each harmonic is proportional to the 
frequency (1/k). The frequency spectrum is plotted in Figure 4.4.1 for a 5-Hz periodic 
square wave. 

 
Figure 4.4.1 FS Coefficients for Square Wave 
 
It is clear from Figure 4.4.1 that most of the energy is contained in the fundamental or 
first harmonic, which is at 5 Hz. The energy at each higher harmonic drops off rapidly. If 
we were to truncate this series by using only the first 10 harmonics to represent the 
signal, all of the energy above 55 Hz would be lost. 
 
 
Digital Fourier Series Analysis and Synthesis 
 
Since we will be using MATLAB on a computer, we will focus on how to compute 
Fourier spectra for discrete-time signals resulting from sampling continuous-time signals. 
This process is facilitated by the DFT (Discrete Fourier Transform), implemented in 
MATLAB using the command fft, which uses the computationally efficient method 
called the Fast Fourier Transform (FFT). 
 



The Fourier transform is an analytical method for determining the frequency content of 
continuous-time analytic signals, which may or may not be periodic. Since aperiodic 
signals do not have a fundamental period, they may have power at a continuum of 
frequencies, rather than only at harmonic frequencies. Thus all possible frequencies can 
be considered in analysis and synthesis. The continuous-time FT is an integral evaluated 
over the entire signal, from the beginning to the end of time. 
 
However, to use a computer to evaluate the spectrum (Fourier transform) of a signal 
represented by a vector of time-domain samples, it is neither possible nor desirable to 
numerically evaluate this integral for all time. Instead of approximating the Fourier 
transform integral by a summation over infinite time, we only sum over a finite number 
of samples. However, the number of samples used in the time domain corresponds to the 
number of “samples” of the signal’s continuous frequency spectrum. The frequency 
resolution of the FT is limited to the number of points used in the computation. If we 
want to analyze for higher frequencies, we must sample at a higher rate since the 
uppermost frequency is limited by the sampling rate; if we want to analyze more densely 
1 e have smaller frequency steps we must take a longer time sequence.   
 
The analysis and synthesis equations that result from this sampling of the signal and its 
spectrum define what is called the Discrete Fourier Transform: 
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In these equations, 

k
Nnk !" #/2 .  Note that these equations look virtually identical to 

those defining the DFS. The only major difference is that the frequencies corresponding 
to each sampled Fourier transform value, or Fourier coefficient X[k], are not necessarily 
related to a fundamental period. To calculate the DFS coefficients using the DFT we need 
to define N such that it corresponds as closely as possible to one period of the signal, 
which is defined by the sample values stored in x[n]. 
 
The DFT in MATLAB is not computed using loops that implement the summation 
equations above; rather, the Fast Fourier Transform (FFT) is used. The FFT essentially 
streamlines the DFT computations to have a minimal number of multiplications by 
removing redundancy from the DFT calculation. The MATLAB implementation of the 
FFT automatically chooses the most efficient way to perform the calculation based on the 
length N selected for the transform. 
 
 
Fourier Analysis Using MATLAB 
 



Assume you have a signal x[n] in the vector x. The DFT of the signal is computed and 
stored in X by entering X = f ft (x). The first value, X (1) , has the value of a0, 
corresponding to the “average” of the signal. 
 
The best way to understand how to interpret the results you obtain using MATLAB is via 
example. You can run the examples by simply typing the filename indicated. We suggest 
that you explore and understand these examples prior to attempting the laboratory 
assignment. 
 
E_4_1 .m: In this example, the DFT of a sum of two cosines is displayed as a function of 
frequency. Centering about an integer index of zero is accomplished using fftshift. 
 
E_4_2 .m: In this example, the DFT of a length-N vector x is computed using different 
length DFTs. The vector x represents the DT signal x[n] obtained by sampling the signal 

( )ttx !20cos)( =  every nTs seconds, where Ts = 0.01 s. The DFTs computed using 
different lengths N, corresponding respectively to (1) five periods of data, (2) five periods 
of data padded with zeros, and (3) 4.5 periods of data, are computed. You should 
examine the results and note the impact of the DFT length. When you are familiar with 
Fourier transform properties, you may wish to revisit this example and see if you can 
analytically understand these differences. 
 
Fourier Series Analysis of Real Signals40 
 
The Fourier series is a good analytical tool, and students always get to solve interesting 
problems like finding the Fourier series of a square wave or a triangle wave. What about 
using the Fourier series on a real signal? 
 
Let’s look at analyzing the vibrations of an acoustic guitar string. If a string is plucked at 
a single point, we expect to see a triangular shape appear on the string, with the highest 
point occurring where the string was plucked. By doing some analysis of this ideal 
vibrating string, the Fourier Series coefficients are 
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where L is the proportion of the string length from the point where the string was plucked 
to the bridge (e.g., 1/5) and h is the initial displacement. It should be noted that the Cn 
values fall off at 1/n2, with zeros at the Lth harmonic. Since the pluck point occurs at 1/L, 
no energy is imparted to that particular frequency (and its harmonics). In Figure 4.4.2 the 
string shape for a pluck point of 1/4 is shown (with a period of 225 samples). 
 



 
Figure 4.4.2 Ideal Plucked String, One Period 
 
If we sample the sound resulting from plucking an acoustic guitar string, however, we 
will not see a triangular waveform. Instead, we will see a waveform that looks like it 
could be a triangle wave, but is smoothed out and has some distortions and bumps, as 
shown in Figure 4.4.3. 

 
Figure 4.4.3 A Sampled Guitar String 
 
This signal is still periodic, so we can find a Fourier series representation for it and 
compare it to the Fourier series for an ideal plucked string to see what impact the guitar 



body has on the waveform. In order to do this, we have to extract a single period of the 
signal. Once we have that, we can apply fft to find the FS coefficients. 
 
We can then pose the question “How does the body change the sound of a plucked string 
from that of an ideal?” Equivalently we could ask, “How does the guitar body modify the 
harmonics of the plucked string?” The impact of a system on the frequency content of a 
signal is called its frequency response, and the process of modifying this frequency 
content is called filtering. 
 
Filtering Operations 
 
To determine the frequency response of the guitar, we are interested in how the 
magnitudes of the input FS coefficients are modified by multiplicative gains, and how the 
phases of the FS coefficients are modified by additive terms. If we assume that the effect 
of the guitar body can be roughly approximated by a CT linear, time-invariant system, 
then the FS for the periodic output signal y(t) can only contain the same harmonic 
frequencies as the input x(t); thus it can be expressed as the Fourier series given below, 
where the ak are the FS coefficients and T0 is the fundamental period of x(t) 
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The function H(jω) is called the system frequency response. Note that the magnitude and 
phase of the frequency response, when evaluated at the harmonic frequencies, determine 
the gain and phase shift, respectively, that are introduced by the system at each harmonic. 
Thus only the magnitude and phase of the input FS terms will be modified by the filter, 
and the amount of the modification depends upon the frequency. Note that if the equation 
above is viewed as the Fourier series for the output signal y(t), then the coefficients for 
y(t) are related to those for x(t) by the complex multiplication nnny cjHc )( !=  
 
 
Filters generally are defined by which frequencies they allow to pass from input to 
output, or equivalently by those that are attenuated. For example, Iowpass filters pass low 
frequencies and attenuate high frequencies. Shown below are example plots of the 
magnitude )( !jH  vs. o for the different types of ideal filters. The filter gain is defined 
to be G, ωc is the cutoff frequency for high- and lowpass filters, and ωh and ωl are the 
cutoff frequencies for bandpass filters. PB stands for passband, defined to be the range of 
frequencies which are passed through to the output, and SB stands for stopband, the range 
of frequencies removed. 
 
  
 
 
 
 



 
 

 
Figure 4.4.4 idealfilters )( !jH  vs. ω 
 
For the ideal filters shown, the magnitude of the filter frequency response, )( !jH  is 
equal to the gain G in the passband and zero in the stopband. The phase of the frequency 
response is assumed to be zero, which implies that the filter does not cause any time shift. 
 
4.5 LABORATORY EXPERIMENT 
 
Evaluating the DFS and IDFS 
 
Problem 1.  Write a MATLAB function to evaluate the DFS of a signal using E ft. Test 
your function by evaluating the FS coefficients of both a 50-Hz square wave and a 50-Hz 
sine wave. Use an 8 kHz sampling rate and a value of N corresponding to exactly 1 
period. 
 
Plot the FS cefficients vs. frequency. Verify that your results are correct by comparing 
your results to the expected analytical results. 
 
Problem 2. Write a MATLAB function that can synthesize a signal from FS 
coefficients given the fundamental frequency. Attempt to generate the signals from 
Problem 1 using your function. You will probably need to use real if you use ifft to 
remove small imaginary components generated by roundoff. 
 
What happens as you increase the number of FS coefficients used to synthesize the 
signal? Does this observation make sense given your theoretical understanding of FS? 
 
Problem 3. We know that the frequencies present in a signal, and therefore in its FS, 
are harmonically related to the fundamental frequency f0. What happens if, after 
analyzing a given periodic waveform, we change f0 when we resynthesize the waveform 
to essentially replicate the waveform “shape” at a different pitch? Determine the first 12 
FS coefficients for a 50-Hz sawtooth wave, then resynthesize using f0 = 100 Hz. 
 
What similarities and differences do you observe between the original and resynthesized 
signals?  Consider both time and frequency domains. 



 
Problem 4. In the file P_4_4 . mat are two periodic waveforms, x and y; x has been 
filtered with an ideal lowpass filter to generate y. By looking at the FS coefficients, 
determine the cutoff frequency, in radians per second, and gain of the lowpass filter. 
 
If you assume a sampling rate of 44.1 kHz, what harmonic frequencies are present?  
What is the filter cutoff frequency as a function of f0? How exact is your estimate of the 
cutoff frequency (ie, in what range of values could it be)? 
 
Problem 5. Construct a MATLAB function that plots the magnitude of the Fourier 
series coefficients for a periodic square wave as a function of frequency. Normalize by 
dividing the magnitude of all coefficients by a0. Fix the width of the rectangular pulses to 
be A = 1 s, and let the period T be a variable. Assume a sampling rate of 100Hz. Generate 
the plot for T = 2 s. Repeat the process several times, doubling the period each time. 
   
Plot your results using the same frequency scale. What do you observe’? What might be 
the implications of these results on the accuracy of the method you used in Problem 3 to 
resynthesize using a different fundamental frequency? 
 
Some Aspects of DFS 
 
Problem 6. Analyzing Acoustic Guitar Data 
 
In P_4_6 .mat, a waveform corresponding to an ideal plucked string is stored in vector 
x_ideal.  The signal resulting from sampling the sound of an acoustic guitar in response 
to a plucked string is stored in x_sampled. Compute the Fourier series coefficients for 
x_ideal, and contrast the results to the mathematical formula on page 40.  Determine the 
pluck point L. Compute the Fourier series coefficients for x_sainpled, and compare the 
Fourier series coefficients of x_ideal and x_sampled. Calculate the change in magnitude 
and phase for each coefficient from ideal to sampled data, and plot these values. What do 
these tell you about the frequency response of the guitar body? Create a function that 
synthesizes the sampled guitar sound from the FS coefficients for the ideal waveform, 
given the magnitude and phase changes found above. 
 
If you had to design a filter that implemented the changes, how would you do it? For 
which pitches (ie, at what frequencies) can you be sure that your filter accurately models 
the guitar’s response? 
 
Problem 7. Creating Beethoven’s Fifth Using Fourier Synthesis 
 
In Lab 3, you synthesized Beethoven’s Fifth Symphony by concatenating sine waves of 
different frequencies. Recreate the first four notes of this musical score by pitch-shifting 
the sampled guitar string using the method described in Problem 3 and the Fourier series 
coefficients that you computed in Problem 6. 
 



Do the notes you’ve created sound better than the times you used before? Does it sound 
like it was played on a guitar?  Why or why not? 
 
Problem 8. Identifying Filter Frequency Responses 
 
In P_4_8 .mat, there are two periodic waveforms, x and y; x has been filtered, creating y. 
From the FS coefficients of x and y, determine as much as possible about the 
frequency response of the filter. Try changing the FS components of x with the frequency 
response you’ve found, and compare the results to y. 
 
How much do the FS coefficients tell you - do you know the entire frequency response of 
the filter?  How accurate is your determination of the response? 


