
Laboratory Assignment 3 
 

Digital Music Synthesis: 
Beethoven’s Fifth Symphony Using MATLAB 

 
PURPOSE 
 
In this laboratory assignment, you will use MATLAB to synthesize the audio tones that 
make up a well-known sequence from Beethoven’s Fifth Symphony by using basic 
mathematical functions as fundamental building blocks. You will explore how 
mathematical operations on these signals yield improvements in perceived quality and 
can be used to generate special effects. By generating a spectrogram of the signal, you 
will learn how to represent changes in the frequency content of signals over time and how 
to interpret such spectrograms. 
 
 
3.1 OBJECTIVES 
 
 
By the end of this assignment, you should be able to: 
 
Time Domain 
 
1. Construct physically meaningful signals mathematically in MATLAB using the 
basic signal building blocks and operations on these signals. 
 
2. Gain physical understanding of constructed signals by viewing them on the 
oscilloscope and using audio playback. 
 
3. Improve the perceived audio quality, shift pitch and generate special effects using 
mathematical operations on signals. 
 
Frequency Domain 
 
4. Generate a time/frequency representation of a signal and understand the 
information contained therein. 
 
5. Explain how the spectrograph and musical score represent the same information. 
 
6. Predict how time-domain changes to the signal that produce special effects will 
alter the spectrograph. 
 
3.2 REFERENCE 
 — 
Review Topics 
 



 1. Signal representations, particularly sinusoids and tones 
 
 2. Sampling, interpolation and decimation from Lab 2 
 
 3. Fourier series 
Exploratory Topics 
 
 1. Special effects 
 
 2. Fourier analysis 
 
 3. Time I frequency representations 
 
 4. Musical notes and practices 
 
 
3.3 LABORATORY PREPARATION 
 
Problems 
 
Question 1. Using the information in the background section, write a mathematical 
expression for a CT signal c(t) that represents your composition. Use shifted CT unit step 
functions to express your signal analytically as a single function. Be sure to pay attention 
to the short pauses after the notes (otherwise, the three G notes will sound like one long 
tone), the frequencies of the notes, and the durations of the notes and rests. For 
simplicity, you can assume that the amplitude (volume) for each note is constant over its 
duration. 
 
Question 2. Using your answer to Question 1, write a mathematical expression for the 
DT signal c[n] obtained by sampling the CT signal c(t) at 8 kHz. Be sure to convert your 
CT unit step functions to valid DT unit step functions. 
 
Question 3. Determine analytical expressions for the operations performed by your 
functions half  and double  and the MATLAB function flipud . Assume that your 
original signal x(t) is sampled and stored as a column vector x  and that the operations 
result in a column vector y, which results in the signal y(t) for audio playback. Express 
y[n] using time scaling and shifting of x[n], and express y(t) using time scaling and 
shifting of x(t). 
 
Question 4. Determine how you would use MATLAB to generate the signal in 
Question 2 Also indicate how you would need to modify this MATLAB function to cause 
the volume of each note to decay exponentially with time. 
 
Question 5. Find mathematical expressions for some of the effects outlined in the 
section on volume variations on page 29 that you intend to use. Use simple examples to 
illustrate your answers. 



Question 6. How do you expect the volume variations you discussed in Questions 4 
and 5 to impact the signal spectrum? What will be the impact on the spectrograph? 
 
Question 7. Given the signal x(t) consisting of two time-varying tones, sketch the 
spectrograph  
 

( ) ( )[ ]
( )tet

tuttttx
10

1

1

21100)(

)(4/)(sin2100cos)(
−−=

++=

ω

πω
 

 
 
3.4 BACKGROUND 
 
 
In this section, we explore how to use simple tones to compose a segment of music. By 
using tones of various frequencies, you will construct the first few bars of Beethoven’s 
famous piece Symphony No. 5 in C-Minor. Each musical note can be represented by a 
sinusoid whose frequency depends on the note pitch. 
 
Frequencies in Music 
 
Musical notes are arranged in groups Of twelve, called octaves. The notes that we’ll be 
using are in the octave containing frequencies ranging from 220Hz to 440Hz. The twelve 
notes in each octave are logarithmically spaced infrequency, with each note frequency 
being 21/12 times the frequency of the next lowest note. Thus, a 1-octave pitch shift 
upwards corresponds to a doubling of the frequencies of the notes in the original octave. 
Table 2 shows the ordering of notes in the octave to be used to synthesize the music for 
this part of the experiment as well as the fundamental frequencies for those notes. 
 

Table 2: Notes in the 220-440Hz octave 
Note Frequency (Hz) 

A 220 
A#, Bb 220*21/12 

B 220*22/12 
C 220*23/12 

C#, Db  
. 
. 
. 

D#, Eb 
E 
F 

F#, Gb 
G 

G#, Ab 220*211/12 
 



 
 
A musical score is essentially a program of sorts—a plot of frequencies (notes, on the 
vertical scale) versus time (measures, on the horizontal scale). The musical sequence of 
notes to the piece you will synthesize is shown in Figure 3.4.1. 
 

 
 
Figure 3.4.1 Opening Notes of Beethoven’s Fifth Symphony (1st movement, Op. 67) 
 
Musical Notation 
 
The horizontal lines on the staff in Figure 3.4.1 represent the notes E, G, B, D, and F 
from bottom to top. The spaces between the lines are used to represent the notes F, A, C, 
and E, again from bottom to top. Note that A-G only yields seven notes. 
 
The additional changes in pitch are denoted by adding the symbols # (sharp: increase 
pitch by 21/12) or b (flat: decrease pitch by 21/12) to a given note. 
 
In the musical score in Figure 3.4.1, the first three eighth notes are all G. While it appears 
that the first half note should be an E, it is actually an Eb due to the inclusion of the three 
flat symbols at the left of the score. The next three eighth notes are all F, and the final 
half note is D. You can get the fundamental frequencies for these notes by following the 
pattern given in Table 2. 
 
Note Durations 
 
In the simplest case, each note may be represented by a burst of a sinusoidal tone 
followed by a shorter period of silence (a pause). The pause allows us to distinguish 
between separate notes at the same pitch. 
 



The duration of each tone burst is determined by whether the note is a whole note, half 
note, quarter note, eighth note, etc. Obviously, a quarter note has twice the duration of an 
eighth note and so on. The short pause following each note should be of the same length 
regardless of the note’s duration. In composed music, longer periods of silence that are 
part of the musical score are indicated by one or more rest symbols. The two “4” symbols 
at the left of the score indicate that there are 4 beats per measure in the score and that a 
quarter note lasts one beat. For this particular piece of music, the duration of a beat 
should be about 1/2 second. 
 
Time / Frequency Representations of Signals 
 
Creating music from a musical score is a straightforward process. What about creating a 
musical score from music? There has to be a way to determine the notes in a sampled 
signal and to find out when they begin and end. 
 
Such a process is called a time / frequency representation of the signal, or a spectrograph. 
Time is plotted on one axis, frequency on another, and color is used to represent the 
presence or absence of frequencies in the signal during that particular time. This is easily 
done in MATLAB by breaking the sampled signal into small time segments, of 
approximately 50 msec in duration, and plotting the energy present at each frequency for 
that time segment. This process is performed by the file P_3_9 .m; check the help on 
this function for specific details of its operation. 
 
Note that the information displayed by this function is a1most identical to a musical 
score. There are some errors in what is displayed, since evaluating the frequency 
information for a small piece of data is inaccurate. 
 
Improving Perceived Quality 
 
Volume variations: Typically, when a note is played, the volume rises quickly from zero 
and then decays over time, depending on how hard the key is struck and how long it is 
depressed.  The variation of the volume over time is divided into four segments: Attack, 
Decay, Sustain, and Release (ADSR). For a given tone, volume changes can be achieved 
by multiplying a sinusoid by another function called a windowing function. A decaying 
exponential is the simplest way to modulate the tone volume. You can try concatenating 
different functions to model ADSR. 
 

 
Figure 3.4.2 An ADSR Envelope 
 



Overlapping tones: Consider a beginning piano player’s attempts at playing a simple 
tune.  This student generally will quit pressing down one key before pressing down the 
next. A more advanced player would have some notes overlapping (either by using floor 
pedals or by pressing keys simultaneously). As the volume of one note is decaying, 
another note is played. Mathematically this can be accomplished by allowing the time 
regions occupied by different sinusoids to overlap. This will yield a much smoother, less 
staccato-sounding piece. 
 
Harmonics: While tones are represented by sinusoids, in real instruments the vibrations 
that generate a given note also include harmonic components. The frequency of the note 
is called the fundamental frequency f0 the nth harmonic is a sinusoid having frequency 
equal to n times the fundamental frequency: nf0. The amplitude, or power, of the 
harmonic components is generally less than that of the fundamental and decreases with 
increasing frequency. For each note, adding in some lower-power harmonics makes the 
note sound “richer,” whereas a single tone sounds very crisp. A word of caution: adding 
in harmonics of equal or greater power will have undesired effects, such as increasing the 
perceived note fundamental, and may make the note sound harsh. 
 
To understand harmonics, recall the Fourier series from mathematics; evaluating a series 
for a certain number of harmonic components is the desired operation. The magnitude of 
a Fourier series coefficient indicates the energy in a harmonic frequency. Consider the 
Fourier series for a square wave - it has only odd harmonics and the magnitude of the nth 
harmonic is proportional to 1/n. 
 
Reverb: Instruments are usually played in rooms that generate reverberations. 
Reverberations are reflections off of room surfaces, including walls, ceiling, floors, and 
obstructions. In DT mathematics, you can view this as generating echoes of the original 
signal, with decreasing amplitude as the delay time increases. However, a major surface 
(e.g., a back wall), may generate more power (amplitude) at specific delays. You can 
determine the delay time by dividing the distance sound travels by the speed of sound (--
300 m/s at sea level). A model for generating an echo is given in Laboratory Assignment 
2. 
 
3.5 LABORATORY ASSIGNMENT 
 
Part I: Song Creation 
 
Problem 1. Using MATLAB, construct a row vector that is a discrete-time 
representation of the notes and rests that make up the musical piece in Figure 3.4.1. Let 
the sampling rate be 8 kHz for this particular composition. Be sure to pay attention to the 
short pauses after the notes (otherwise, the three G notes will sound like one long tone), 
the frequencies of the notes, and the durations of the notes and rests. Once you have a 
piece that you think accurately represents the music, play the composition. Remember to 
scale your signal before saving it as a sound file. 
 



Verify that the timing and pitch of your composition is an accurate representation of the 
musical score.  Describe how it sounds and how it can be improved.  Think about terms 
like richness of sound, clarity of pitch, flow of composition, musical expression, 
instrumental versus vocal sounds, etc. 
 
Problem 2. Using what you know about digital pitch shifting and the logarithmic 
frequency relation between the notes in Table 2, modify your composition using half  
and double  so that it is played back ac octave higher and one octave lower. Note that 
in the process of digital pitch shifting, you also changed the duration of the signals. 
 
Discuss what happens to the pitch and duration of a signal when you use your functions 
half  and double  to modify it. Be specific: indicate new durations in seconds and 
new pitches by both frequency and musical pitch. 
 
Problem 3. Try to have the volume of each note decay over time to make your music 
sound more interesting and realistic. 
 
How did changing the signal amplitude affect your perception of the volume? If you 
double the signal amplitude, does the volume double as well? 
 
Part II: Note Modifications 
 
Problem 4. Modify your pitch-shifted composition so that each note is of the same 
duration as in the original composition. 
 
Problem 5. Can you pitch shift your composition up by a single half-step? Consider 
interpolating first and then resampling. 
 
Problem 6. Allow decaying notes to overlap slightly in time. 
 
Problem 7. Try adding harmonics to create a richer sound. 
 
Problem 8. Use the M-file you created in Lab 1 to generate an echo to create reverb 
effects. 
 
For the sequence of the possible improvements above, determine the mathematical 
expressions for the sequence of operations needed to achieve the desired result Use a 
simple mathematical example to illustrate your reasoning Are you able to achieve the 
desired result? Discuss what worked well and what needs improvement. Explain why 
 
Part III: Frequency Analysis 
 
Problem 9. Compute the time-frequency representation of your signal from Problem 1 
with the function P_3_9 m . Compare the plot with the musical score in Figure 3.4.1, 
and identify each note from the score on the spectrogram. 
 



Problem 10. Generate spectrograms of your pitch-shifted composition from Problem 2. 
You will need to change the frequency range displayed by P_3_9 .m  to see any 
results. 
 
How do these differ from the spectrogram of the original composition7 Verify that your 
results are as expected by identifying The pitch and duration of each note on the 
spectrogram. 
 
Problem 11.  Generate spectrograms for some of the special effects you generated in 
Problems 4 - 8. 
 
How do these spectral effects and improvements alter the spectrogram?  Based on the 
operations you performed and properties of the Fourier Transform, do these changes 
make sense? 


