Best-First Search
Minimizing Space or Time

RBFS

Save space, take more time

© Gunnar Gotshalks RBFS-1

RBFS general properties

¢ Similar to A* algorithm developed for heuristic search

© Gunnar Gotshalks

RBFS-2

RBFS general properties — 2

¢ Similar to A* algorithm developed for heuristic search

» Both are recursive in the same sense

© Gunnar Gotshalks

RBFS-3

RBFS general properties — 3

¢ Similar to A* algorithm developed for heuristic search

» Both are recursive in the same sense

¢ Difference between A* and RBFS

© Gunnar Gotshalks

RBFS-4

RBFS general properties — 3

¢ Similar to A* algorithm developed for heuristic search
» Both are recursive in the same sense

¢ Difference between A* and RBFS
» A* keeps in memory all of the already generated nodes

© Gunnar Gotshalks RBFS-5

RBFS general properties — 4

¢ Similar to A* algorithm developed for heuristic search
» Both are recursive in the same sense

¢ Difference between A* and RBFS
» A* keeps in memory all of the already generated nodes

» RBFS only keeps the current search path and the sibling
nodes along the path

© Gunnar Gotshalks RBFS-6

RBFS space — 2

» When does RBFS suspend the search of a subtree?

© Gunnar Gotshalks

RBFS-7

RBFS space -3

» When does RBFS suspend the search of a subtree?

> When it no longer looks the best

© Gunnar Gotshalks

RBFS-8

RBFS space -3

» When does RBFS suspend the search of a subtree?

> When it no longer looks the best

» What does it do when a subtree is suspended?

© Gunnar Gotshalks

RBFS-9

RBFS space — 3

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best

» What does it do when a subtree is suspended?
> It forgets the subtree to save space

© Gunnar Gotshalks RBFS-10

RBFS space —4

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best

» What does it do when a subtree is suspended?
> It forgets the subtree to save space

» What is the space complexity?

© Gunnar Gotshalks RBFS-11

RBFS space -5

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best

» What does it do when a subtree is suspended?
> It forgets the subtree to save space

» What is the space complexity?
> Linear the depth of the search

© Gunnar Gotshalks RBFS-12

RBFS space — 6

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best

» What does it do when a subtree is suspended?
> It forgets the subtree to save space

» What is the space complexity?

> Linear the depth of the search
— Same as IDA*

© Gunnar Gotshalks RBFS-13

RBFS memory

» When RBFS suspends searching a subtree, what does it

remember?

© Gunnar Gotshalks

RBFS-14

RBFS memory — 2

» When RBFS suspends searching a subtree, what does it

remember?

> An updated f-value of the root of the subtree

© Gunnar Gotshalks

RBFS-15

Updated f-values

» How does RBFS update the f-values?

© Gunnar Gotshalks

RBFS-16

Updated f-values — 2

» How does RBFS update the f-values?

> Backing up the f-values in the same way as A* does

© Gunnar Gotshalks

RBFS-17

f-value notation

¢ Static f-value
» f(N)
> Value returned by the evaluation function
> Always the same

© Gunnar Gotshalks RBFS-18

f-value notation — 2

¢ Static f-value
» f(N)
> Value returned by the evaluation function
> Always the same

0 Backed-up value
» F(N)
> Changes during the search
— Depends upon descendants of N

© Gunnar Gotshalks RBFS-19

F(N) definition

¢ RBFS backs up f-values in the same way as A*

» How is F(N) defined?

© Gunnar Gotshalks

RBFS-20

F(N) definition — 2

¢ RBFS backs up f-values in the same way as A*

» How is F(N) defined?

> If N has never been expanded?

© Gunnar Gotshalks

RBFS-21

F(N) definition — 3

¢ RBFS backs up f-values in the same way as A*

» How is F(N) defined?

> If N has never been expanded?
— F(N) =£(N)

© Gunnar Gotshalks RBFS-22

F(N) definition — 4

¢ RBFS backs up f-values in the same way as A*

» How is F(N) defined?

> If N has never been expanded?
— F(N) =£(N)

> If N has been expanded?

© Gunnar Gotshalks RBFS-23

F(N) definition — 5

¢ RBFS backs up f-values in the same way as A*

» How is F(N) defined?

> If N has never been expanded?
— F(N) =£(N)

> If N has been expanded?

— F(N)=min(F(Sj))
— Where Sj are the subtrees of N

© Gunnar Gotshalks RBFS-24

Subtree exploration

» How does RBFS explore subtrees?

© Gunnar Gotshalks

RBFS-25

Subtree exploration — 2

» How does RBFS explore subtrees?

> As in A*, within a given f-bound

© Gunnar Gotshalks

RBFS-26

Subtree exploration — 3

» How does RBFS explore subtrees?

> As in A*, within a given f-bound

» How is the bound determined?

© Gunnar Gotshalks RBFS-27

RBFS subtree exploration — 4

» How does RBFS explore subtrees?

> As in A*, within a given f-bound

» How is the bound determined?

> From the F-values of the siblings along the current
search path

© Gunnar Gotshalks RBFS-28

Subtree exploration — 5

» How does RBFS explore subtrees?

> As in A*, within a given f-bound

» How is the bound determined?

> From the F-values of the siblings along the current
search path

> The smallest F-value
— The closest competitor

© Gunnar Gotshalks RBFS-29

Subtree exploration — 6

¢ Suppose N is currently the best node

© Gunnar Gotshalks

RBFS-30

Subtree exploration — 7

¢ Suppose N is currently the best node
> N is expanded

© Gunnar Gotshalks

RBFS-31

Subtree exploration — 8

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded

© Gunnar Gotshalks RBFS-32

Subtree exploration — 9

¢ Suppose N is currently the best node
> N is expanded

> N’s children are expanded

» Until when?

© Gunnar Gotshalks

RBFS-33

Subtree exploration — 10

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded

» Until when?
> F(N) > Bound

© Gunnar Gotshalks RBFS-34

Subtree exploration — 10

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded

» Until when?
> F(N) > Bound

» Then what happens?

© Gunnar Gotshalks RBFS-35

Subtree exploration — 11

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded

» Until when?
> F(N) > Bound

» Then what happens?
> Nodes below N are forgotten

© Gunnar Gotshalks RBFS-36

Subtree exploration — 12

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded

» Until when?
> F(N) > Bound

» Then what happens?
> Nodes below N are forgotten
> N’s F-value is updated

© Gunnar Gotshalks RBFS-37

Subtree exploration — 13

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded

» Until when?
> F(N) > Bound

» Then what happens?
> Nodes below N are forgotten
> N’s F-value is updated
> RBFS selects which node to expand next

© Gunnar Gotshalks RBFS-38

F-value inheritance

¢ F-values can be inherited from a node’s parents

© Gunnar Gotshalks

RBFS-39

F-value inheritance — 2

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded

© Gunnar Gotshalks

RBFS-40

F-value inheritance — 3

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded

» If F(N) > f(N) then N had already been expanded

© Gunnar Gotshalks

RBFS-41

F-value inheritance — 4

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children

© Gunnar Gotshalks

RBFS-42

F-value inheritance — 5

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

© Gunnar Gotshalks

RBFS-43

F-value inheritance — 6

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again

© Gunnar Gotshalks

RBFS-44

F-value inheritance — 7

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again
» Compute f(Ny)

© Gunnar Gotshalks

RBFS-45

F-value inheritance — 8

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again
» Compute f(Ny)
» F(Nj) = max (F(N) , f(N,))

© Gunnar Gotshalks

RBFS-46

F-value inheritance — 9

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again
» Compute f(Ny)
» F(Nj) = max (F(N), f(Ny))
> Ni’s F-value can be inherited from N

© Gunnar Gotshalks

RBFS-47

F-value inheritance — 10

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again
» Compute f(Ny)
» F(Nj) = max (F(N), f(Ny))
> Ni’s F-value can be inherited from N

— Ny was generated earlier

© Gunnar Gotshalks

RBFS-48

F-value inheritance — 11

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again
» Compute f(Ny)
» F(Nj) = max (F(N), f(Ny))
> Ni’s F-value can be inherited from N

— Ny was generated earlier
— F(Ny) was = F(N), otherwise F(N) would be smaller

© Gunnar Gotshalks RBFS-49

Fig 12.2 snapshots
(s) (8)
2 2
7=2+5® @ F=f=7 G F=F=9
9=2+7
5

8=4+4

M=7+4 4

1M1=9+ Zé
, S is expanded

3 \‘/ A is found to be the best child
11=11+0 @

f(n) in mocha = g(n) in clover + h(n) in magenta

10=6+4

12=9+3

OXTOXEON

© Gunnar Gotshalks RBFS-50

Fig 12.2 snapshots — 2

10=6+4é>

3 11=9+ 2@ A is expanded with bound 9
- 2

12'9"3@\ C has F-value 10

3
1121120 @ Stop expansion, backup F value

f(n) in mocha = g(n) in clover + h(n) in magenta

© Gunnar Gotshalks RBFS-51

Fig 12.2 snapshots — 3
(s) (S)
2 2
7=245 Q)’ @ F=10 0 G F=9
2 9=2+7

s=4+4 é}

M=7+4 4

2
1o=e+4<i>
3 129+ 2@ Forget expansion from A

A has backed up F value 10

12=9+3é>\ 2
3
@ E is best to expand next
11=11+0

f(n) in mocha = g(n) in clover + h(n) in magenta

© Gunnar Gotshalks RBFS-52

Fig 12.2 snapshots — 4
(s) (s)
2 2
7=2+5® @ F=10 (&) (E) F=9
2 9=2+7

8=4+4 > @ F=f=11

T 0

M=7+4 4

10=6+4é>

3 11=9 +2é> E is expanded with bound 10

- 2
12'9+3é>\ F has F-value 11
3
111 Stop expansion, backup F value

f(n) in mocha = g(n) in clover + h(n) in magenta

© Gunnar Gotshalks RBFS-53

Fig 12.2 snapshots — 5
(s) (S,
2 2
7=2+5® @ F=10(A) (E) F=11
2 9=2+7

s=4+4 EF)

M=7+4 4

2
1o=e+4<i>
3 129+ 2@ Forget expansion from E

E has backed up F value 11

12=9+3é>\ 2
3
@ A is best to expand next
11=11+0

f(n) in mocha = g(n) in clover + h(n) in magenta

© Gunnar Gotshalks RBFS-54

Fig 12.2 snapshots — 6

2
82444 5 F=10(B) When B and C are
‘ regenerated, they
inherit F value 10 from

M=7+4 , F=10 the parent
10=6+4é>

W

-

|

©

+

08

m
Il
-ty
Il
—h
N

A is expanded with bound 11

12=9+3é>\ 2
\ \‘/ D has F-value 12
11=11 +0

Stop expansion, backup F value
f(n) in mocha = g(n) in clover + h(n) in magenta

© Gunnar Gotshalks RBFS-55

Fig 12.2 snapshots — 7
(s) (S)
2 2
7=24+5 Q)’ @ F=12(A) (E) F =11
2 9=2+7

s=4+4 EF)

M=7+4 4

2
1o=e+4<i>
3 129+ 2@ Forget expansion from A

A has backed up F value 12

12=9+3é>\ 2
3
@ E is best to expand next
11=11+0

f(n) in mocha = g(n) in clover + h(n) in magenta

© Gunnar Gotshalks RBFS-56

Fig 12.2 snapshots — 8

2 2
7=2+5® @ F=12@ F=11
2 9=2+7

5

” F=11
2 M=7+4
=7+ 2 F=11
1o=6+4é> (&)
3 11=9+2é>

12=9+3é>\ 2
3 E is expanded with bound 12
11=11+0

f(n) in mocha = g(n) in clover + h(n) in magenta Reach goal, search ends

8=4+4

(=)

© Gunnar Gotshalks RBFS-57

Algorithm

function NewF (N, F(N), Bound)
if F(N) > Bound then NewF := F(N)
else if goal(N) then exit search with success
else if N has no children then NewF :=infinity - dead end
else for each child N, of N do
if f(N) < F(N) then F(N,) := max(F(N), f(N,))
else F(N) :=f(Ny)
sort children Ny in increasing order of F-value
while F(N4) = Bound and F(N4) < infinity do
Bound1 := min (Bound, F-value of sibling N,)
F(N4) := NewF (N4, F(N4), Bound1)
reorder nodes N4, N5, ... according to new F(N,)
end
end
NewF := F(N)

© Gunnar Gotshalks RBFS-58

