Best-First Search
Minimizing Space or Time

RBFS

Save space, take more time
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RBFS general properties

¢ Similar to A* algorithm developed for heuristic search
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RBFS general properties — 2

¢ Similar to A* algorithm developed for heuristic search

» Both are recursive in the same sense
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RBFS general properties — 3

¢ Similar to A* algorithm developed for heuristic search

» Both are recursive in the same sense

¢ Difference between A* and RBFS

© Gunnar Gotshalks

RBFS-4



RBFS general properties — 3

¢ Similar to A* algorithm developed for heuristic search
» Both are recursive in the same sense

¢ Difference between A* and RBFS
» A* keeps in memory all of the already generated nodes
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RBFS general properties — 4

¢ Similar to A* algorithm developed for heuristic search
» Both are recursive in the same sense

¢ Difference between A* and RBFS
» A* keeps in memory all of the already generated nodes

» RBFS only keeps the current search path and the sibling
nodes along the path
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RBFS space — 2

» When does RBFS suspend the search of a subtree?
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RBFS space -3

» When does RBFS suspend the search of a subtree?

> When it no longer looks the best
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RBFS space -3

» When does RBFS suspend the search of a subtree?

> When it no longer looks the best

» What does it do when a subtree is suspended?
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RBFS space — 3

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best

» What does it do when a subtree is suspended?
> It forgets the subtree to save space
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RBFS space —4

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best

» What does it do when a subtree is suspended?
> It forgets the subtree to save space

» What is the space complexity?
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RBFS space -5

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best

» What does it do when a subtree is suspended?
> It forgets the subtree to save space

» What is the space complexity?
> Linear the depth of the search
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RBFS space — 6

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best

» What does it do when a subtree is suspended?
> It forgets the subtree to save space

» What is the space complexity?

> Linear the depth of the search
— Same as IDA*
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RBFS memory

» When RBFS suspends searching a subtree, what does it

remember?
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RBFS memory — 2

» When RBFS suspends searching a subtree, what does it

remember?

> An updated f-value of the root of the subtree
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Updated f-values

» How does RBFS update the f-values?
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Updated f-values — 2

» How does RBFS update the f-values?

> Backing up the f-values in the same way as A* does
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f-value notation

¢ Static f-value
» f(N)
> Value returned by the evaluation function
> Always the same

© Gunnar Gotshalks RBFS-18



f-value notation — 2

¢ Static f-value
» f(N)
> Value returned by the evaluation function
> Always the same

0 Backed-up value
» F(N)
> Changes during the search
— Depends upon descendants of N
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F(N) definition

¢ RBFS backs up f-values in the same way as A*

» How is F(N) defined?
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F(N) definition — 2

¢ RBFS backs up f-values in the same way as A*

» How is F(N) defined?

> If N has never been expanded?
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F(N) definition — 3

¢ RBFS backs up f-values in the same way as A*

» How is F(N) defined?

> If N has never been expanded?
— F(N) =£(N)
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F(N) definition — 4

¢ RBFS backs up f-values in the same way as A*

» How is F(N) defined?

> If N has never been expanded?
— F(N) =£(N)

> If N has been expanded?
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F(N) definition — 5

¢ RBFS backs up f-values in the same way as A*

» How is F(N) defined?

> If N has never been expanded?
— F(N) =£(N)

> If N has been expanded?

— F(N)=min(F(Sj))
— Where Sj are the subtrees of N

© Gunnar Gotshalks RBFS-24



Subtree exploration

» How does RBFS explore subtrees?
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Subtree exploration — 2

» How does RBFS explore subtrees?

> As in A*, within a given f-bound
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Subtree exploration — 3

» How does RBFS explore subtrees?

> As in A*, within a given f-bound

» How is the bound determined?
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RBFS subtree exploration — 4

» How does RBFS explore subtrees?

> As in A*, within a given f-bound

» How is the bound determined?

> From the F-values of the siblings along the current
search path
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Subtree exploration — 5

» How does RBFS explore subtrees?

> As in A*, within a given f-bound

» How is the bound determined?

> From the F-values of the siblings along the current
search path

> The smallest F-value
— The closest competitor
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Subtree exploration — 6

¢ Suppose N is currently the best node
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Subtree exploration — 7

¢ Suppose N is currently the best node
> N is expanded
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Subtree exploration — 8

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded
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Subtree exploration — 9

¢ Suppose N is currently the best node
> N is expanded

> N’s children are expanded

» Until when?
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Subtree exploration — 10

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded

» Until when?
> F(N) > Bound
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Subtree exploration — 10

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded

» Until when?
> F(N) > Bound

» Then what happens?
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Subtree exploration — 11

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded

» Until when?
> F(N) > Bound

» Then what happens?
> Nodes below N are forgotten
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Subtree exploration — 12

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded

» Until when?
> F(N) > Bound

» Then what happens?
> Nodes below N are forgotten
> N’s F-value is updated
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Subtree exploration — 13

¢ Suppose N is currently the best node
> N is expanded
> N’s children are expanded

» Until when?
> F(N) > Bound

» Then what happens?
> Nodes below N are forgotten
> N’s F-value is updated
> RBFS selects which node to expand next
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F-value inheritance

¢ F-values can be inherited from a node’s parents

© Gunnar Gotshalks

RBFS-39



F-value inheritance — 2

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
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F-value inheritance — 3

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded

» If F(N) > f(N) then N had already been expanded
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F-value inheritance — 4

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
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F-value inheritance — 5

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory
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F-value inheritance — 6

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again
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F-value inheritance — 7

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again
» Compute f(Ny)
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F-value inheritance — 8

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again
» Compute f(Ny)
» F(Nj) = max ( F(N) , f(N,) )
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F-value inheritance — 9

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again
» Compute f(Ny)
» F(Nj) = max ( F(N), f(Ny))
> Ni’s F-value can be inherited from N
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F-value inheritance — 10

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again
» Compute f(Ny)
» F(Nj) = max ( F(N), f(Ny))
> Ni’s F-value can be inherited from N

— Ny was generated earlier
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F-value inheritance — 11

¢ F-values can be inherited from a node’s parents

¢ Let N be a node about to be expanded
» If F(N) > f(N) then N had already been expanded
» F(N) was determined from N’s children
» Children have been removed from memory

O Suppose a child Ny of N is generated again
» Compute f(Ny)
» F(Nj) = max ( F(N), f(Ny) )
> Ni’s F-value can be inherited from N

— Ny was generated earlier
— F(Ny) was = F(N), otherwise F(N) would be smaller
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Fig 12.2 snapshots
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Fig 12.2 snapshots — 2
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Fig 12.2 snapshots — 3
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Fig 12.2 snapshots — 4
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Fig 12.2 snapshots — 5
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Fig 12.2 snapshots — 6
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Fig 12.2 snapshots — 7
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Fig 12.2 snapshots — 8
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Algorithm

function NewF (N, F(N), Bound)
if F(N) > Bound then NewF := F(N)
else if goal(N) then exit search with success
else if N has no children then NewF :=infinity - dead end
else for each child N, of N do
if f(N) < F(N) then F(N, ) := max( F(N), f(N,))
else F(N) :=f(Ny)
sort children Ny in increasing order of F-value
while F(N4) = Bound and F(N4) < infinity do
Bound1 := min ( Bound, F-value of sibling N,)
F(N4) := NewF (N4, F(N4), Bound1)
reorder nodes N4, N5, ... according to new F(N,)
end
end
NewF := F(N)
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