
GR-1	
© Gunnar Gotshalks!

Grammar Rules in Prolog!
!

GR-2	
© Gunnar Gotshalks!

Backus-Naur Form (BNF)!

◊  BNF is a common grammar used to define programming
languages!
» Developed in the late 1950’s  
!

◊  Because grammars are used to describe a language they
are said to produce sentences!
!

GR-3	
© Gunnar Gotshalks!

Grammars and Design!

◊  Grammars can be used to describe the structure of
objects and computations.!
» Can be used to describe the structure of input!

> Parse!
» Can be used to generate output!

> Compute!
» Can be used to describe the structure of

algorithms!
> Design!

GR-4	
© Gunnar Gotshalks!

Grammar Definition!

◊  A grammar, G, is a 4-tuple G = <T, N, S, P>, where!
» T – a set of terminal symbols!

> They represent themselves!
– A, begin, 123���
	

» N – a set of non-terminal symbols!
> They are enclosed between ‘<‘ and ‘>’!

–  <program> <while> <letter> <digit>���
	

» S N – the starting symbol!∈

GR-5	
© Gunnar Gotshalks!

Grammar Definition – 2!

!
» P – is a finite set of production or rewrite rules of

the form !
	
 	
!

>  and are sequences, strings, of terminal and
non-terminal symbols  
!

>  | | ≥ 1 
!

>  contains at least one non-terminal symbol!

α ::= β
α β

α

α

GR-6	
© Gunnar Gotshalks!

Types of Grammars!

◊  Type 0 – Unrestricted or General grammars!
» Correspond to Turing machines!
» Can compute anything 
!

◊  Type 1 – Context sensitive grammars!
»  In general not used, as they are too complex  
!

◊  Type 2 – Context free grammars!
» Often used to describe the structure of

programming languages!

GR-7	
© Gunnar Gotshalks!

Types of Grammars – 2!

◊  Type 3 – Regular grammars!
» Correspond!

> Regular expressions!
> Finite state machines  
!

» Most business problems can be described with
regular grammars!

> Although context free grammars are used, due
to their ease of use!

GR-8	
© Gunnar Gotshalks!

Unrestricted Grammar!

◊  No restrictions on the definition!
»  In particular permits | | < | |!

> Permits erasure of terminal symbols!
αβ

GR-9	
© Gunnar Gotshalks!

Context Sensitive Grammar!

◊  Restrict productions such that there is no erasure!
»  | | ≥ | |!

> One exception is that the starting symbol may
be in the production <Start> ::= to be able to
produce the empty sentence!

◊  The following defines the language  
 

!An Bn Cn for n ≥ 1!

! !(1) <S> ::= <A> C  
!(2) <S> ::= <A> <S> C  
!(3) <A> ::= <A>  
!(4) C ::= B C ! !(5) B ::= B B  
!(6) <A> B ::= A B ! !(7) <A> A ::= A A!

β α

ε

GR-10	
© Gunnar Gotshalks!

Context Free Grammar!

◊  Restrict to be a single non-terminal!
»  | | = 1!

> This permits non-terminals to be removed!
– Note there is no erasure as terminals cannot be

removed	

◊  The following defines the language  
 

!An Bn for n ≥ 0!

! !(1) <S> ::=  
!(2) <S> ::= A <S> B!

α
α

ε

GR-11	
© Gunnar Gotshalks!

Regular Grammar!

◊  Restrict to be a single non-terminal!

◊  Restrict to have at most one non-terminal, with the non-
terminal, if it occurs, being at either end of !
»  | | ≥ 1!

> One exception is that the starting symbol may
be in the production <Start> ::= to be able to
produce the empty sentence!

◊  Can restrict, without loss of generality to productions of the
following structure giving a Right Regular Grammar!

! !(1) <non terminal> ::= terminal 
!(2) <non terminal> ::= terminal <non terminal>!

ε

α
β

β
β

GR-12	
© Gunnar Gotshalks!

Sentence Generation for An Bn !

◊  <S> ! ! !Rule 1 !!
◊  <S> A <S> B ! !Rule 2  

! A B ! !Rule 1!

◊  <S> A <S> B ! !Rule 2  
! A A <S> B B !Rule 2 
! A A B B ! !Rule 1!

◊  <S> A <S> B ! !Rule 2  
! A A <S> B B !Rule 2 
! A A A <S> B B B!Rule 2 
! A A A B B B !Rule 1!

◊  …!

ε→
→
→
→
→
→
→
→
→
→

GR-13	
© Gunnar Gotshalks!

Parsing & Prolog!

◊  Parsing is the opposite of sentence generation!
» Task is to find a sequence of rules that produce a

given sentence!

◊  Prolog has a built-in notation for representing grammar
rules called Definitive Context Grammar (DCG)!

GR-14	
© Gunnar Gotshalks!

Parsing & Prolog – 2!

◊  In a DCG the grammar for An Bn is represented as
follows!

! !(1) S --> [A] , [B] . 
!(2) S --> [A] , S , [B] . 

!
!Upper case is used in the slide for easier reading, in
Prolog lower case (constants) would be used for A
and B and not upper case (variables).!

!

GR-15	
© Gunnar Gotshalks!

DCG Translation!

◊  DCG statements are translated into Prolog!

◊  The following are examples.!
n --> n1 , n2 , … , nn .!

n (S, Rest) :- 
 n1(S, R2), n2(R2, R3) , … , nn(Rn, Rest) .!

n --> [T1] , [T2] , … [Tn] .!
n([T1, T2, … , Tn | Rest] , Rest) .!

n --> n1 , [T2] , n3 , [T4] .!
n(S, Rest) :- n1(S, [T2 | R3]) , n3(R3, [T4 | Rest]) .!

n --> [T1] , n2 , [T3] , n4 .!
! n([T1 | R2], Rest) :- 
! n2(R2, [T3 | R4]) , n4(R4, Rest) .!

GR-16	
© Gunnar Gotshalks!

Translation of An Bn !

! !S --> [A] , [B] . 
!S --> [A] , S , [B] .!

==>!
! !s ([a , b | Rest] , Rest) .!

! !s ([a | R1] , Rest) :- s (R1, [b | Rest]) .!

◊  Every sentence is represented by 2 lists!
» Difference lists of symbols!

> The first list is the sentence you are parsing!
> The second list is the part of the sentence that

is left-over when parsing is done!
s ([a , b], []).!
s ([a , a , b , b] , []).!
s ([a , a , b , b , c] , [c]).!

Sample  
queries!

GR-17	
© Gunnar Gotshalks!

Movement example!

move --> step. 
move --> step, move. 
step --> [up]. 
step --> [down].!

Translation 
!
move (List , Rest) :- step (List , Rest). 
move (List1 , Rest) :- step (List1 , List2) , move (List2, Rest). 
step ([up | Rest] , Rest). 
step ([down | Rest] , Rest).!

Example queries  
 
 move ([up, up, down] , []). 
 move ([up, up, left] , []). 
 move ([up, M, up] , []).!

GR-18	
© Gunnar Gotshalks!

P is a T example using determinants!

parse --> [P] , [is , a] , [T] .!

Translation 
!
parse (S , Sr) :- det1 (S , S0) 
 , det2 (S0 , S1) 
 , det3 (S1 , S2)!
 , det4 (S2 , Sr). 
det1 ([P | St] , St) .!
det2 ([is, a | St] , St) .!
det3 ([T | St] , St) . 
det4 (['.’ | St] , St) .!

Example query  
 parse ([‘John’ , is , a , person , ‘.’] , []).!

GR-19	
© Gunnar Gotshalks!

Grammars & Algorithms!

◊  Unrestricted grammars have been used to write programs!
» Snobol language was used to develop a system

called MUMPS that was used in hospital
applications circa 1960’s–1970’s!

GR-20	
© Gunnar Gotshalks!

SNOBOL!

◊  In Snobol a grammar is defined to translate (rewrite) an
input string of symbols to an output string of symbols!
» The production rules are applied using the Markov

algorithm!
> Developed during the 1940's as yet another

description of what it means to compute!
» Works in a similar way to Prolog!

> Pattern matching takes place on strings, instead
of compound terms!

GR-21	
© Gunnar Gotshalks!

Markov Algorithm!

◊  Input!
» A numbered set of productions 	

> Numbering is from 1 up!
» An input string – maStr – over the alphabet!

> No distinction needed for terminals and non-
terminals!

◊  Computation!
» The productions are applied to the sequence of

strings beginning with the input string!
◊  Output!

» The resulting string when no production is
applicable!

α→ β

GR-22	
© Gunnar Gotshalks!

Markov Algorithm!

PROCEDURE!
VAR j : integer ! !{ An index to a production.}!
; k : integer ! !{ An index to the occurrence�

of an alpha [j] in maStr.}!
; notAtEnd : boolean !{ Goes FALSE when algorithm is done.}#
!
; BEGIN!
 j := 1 ! !{ Start at production 1.}!
 ; notAtEnd := true!
!
 ; WHILE notAtEnd DO BEGIN!

!… DO loop body – see next slide!
 END!
 END!

GR-23	
© Gunnar Gotshalks!

Markov Algorithm Body of Loop!

 !{ Find left most occurrence of alpha.}#
 k := index (maStr, 1 , alpha [j])#
 !
; IF k = 0 THEN {No alpha, try the next production.}!
 BEGIN j := j+1 !{No alpha, try the next production.}#
#
 ; IF j > prodCount ! {Do we have a production to try?}!
 THEN notAtEnd := false {No production, stop.}#
 END!
 END!
!
 ELSE BEGIN ! {Found alpha, apply production.}!
 replace (maStr, beta [j] , k , alpha [j] . length)!
 j := 1 ! {Start with first production again.}!
 END!
!
END!

GR-24	
© Gunnar Gotshalks!

MA Add two binary numbers!

◊  Alphabet!
» 0 1 !<- The binary digits.!
» a !<- Remember a 1.!
» b !<- Remember a 0.!
» c !<- Remember a carry.!
» N !<- A 1 in the sum.!
» Z !<- A 0 in the sum.!
» X !<- Separator for the two input numbers.!

GR-25	
© Gunnar Gotshalks!

MA Add two binary numbers – 2!

◊  Productions!
»  a1 -> 1a ; a0 -> 0a ; <- Travel right with a one!
»  b1 -> 1b ; b0 -> 0b ; <- Travel to right with a zero!
»  1c -> c0 ; 0c -> 1 ; c -> 1 ; <- Propagate a carry!
»  1a -> cZ ; 0a -> N ; Xa -> N ; <- Add one to least sig digit 

 ! ! ! ! of n2!
»  1b -> N ; 0b -> Z ; Xb -> Z ; <- Add zero to least sig 

! ! ! ! digit of n2!
»  1X -> Xa ; 0X -> Xb ; <- Move least sig digit of 

! ! ! ! n1 to add position!
»  N -> 1 ; Z -> 0 ; ! <- Recover all zeros and ones!

◊  An input string!
»  101X1101!

GR-26	
© Gunnar Gotshalks!

SNOBOL – Syntactic Sugar!

◊  Some productions terminate with a period!
»  If such a production is applied, the computation

terminates!

◊  Some productions are labeled  
!

◊  Some productions have success and failure tags!
»  If such a production is applied, the Markov

algorithm resumes from the production labeled by
the success tag 
!

»  If such a production is not applied, then the Markov
algorithm resumes from the production labeled by
the failure tag!

