Grammar Rules in Prolog

Backus-Naur Form (BNF)

- BNF is a common grammar used to define programming languages
 - » Developed in the late 1950's
- Because grammars are used to describe a language they are said to produce sentences

Grammars and Design

- Grammars can be used to describe the structure of objects and computations.
 - » Can be used to describe the structure of input > Parse
 - » Can be used to generate output
 - > Compute
 - » Can be used to describe the structure of algorithms
 - > Design

Grammar Definition

- ♦ A grammar, **G**, is a 4-tuple **G** = <**T**, **N**, **S**, **P**>, where
 - » T a set of terminal symbols
 - > They represent themselves
 - A, begin, 123
 - » N a set of non-terminal symbols
 > They are enclosed between '<' and '>'
 - <program> <while> <letter> <digit>
 - $S \in N$ the starting symbol

Grammar Definition – 2

» P – is a finite set of production or rewrite rules of the form

$$\alpha := \beta$$

> α and β are sequences, strings, of terminal and non-terminal symbols

 $> |\alpha| \ge 1$

> α contains at least one non-terminal symbol

Types of Grammars

- ♦ Type 0 Unrestricted or General grammars
 - » Correspond to Turing machines
 - » Can compute anything
- Type 1 Context sensitive grammars
 In general not used, as they are too complex
- ♦ Type 2 Context free grammars
 - » Often used to describe the structure of programming languages

Types of Grammars – 2

- ♦ Type 3 Regular grammars
 - » Correspond
 - > Regular expressions
 - > Finite state machines
 - » Most business problems can be described with regular grammars
 - > Although context free grammars are used, due to their ease of use

Unrestricted Grammar

- No restrictions on the definition
 - » In particular permits $|\beta| < |\alpha|$
 - > Permits erasure of terminal symbols

Context Sensitive Grammar

- Restrict productions such that there is no erasure
 - $> |\beta| \ge |\alpha|$
 - > One exception is that the starting symbol may be in the production <Start> ::= E to be able to produce the empty sentence
- ♦ The following defines the language

 $A^n B^n C^n$ for $n \ge 1$

Context Free Grammar

 \diamond Restrict α to be a single non-terminal

 $\approx |\alpha| = 1$

> This permits non-terminals to be removed

Note there is no erasure as terminals cannot be removed

♦ The following defines the language

 $A^{n} B^{n} \text{ for } n \ge 0$ (1) $\langle S \rangle ::= \mathcal{E}$

(2) **<S> ::= A <S> B**

Regular Grammar

- \diamond Restrict α to be a single non-terminal
- \diamond Restrict β to have at most one non-terminal, with the non-terminal, if it occurs, being at either end of β
 - » | β | ≥ 1

> One exception is that the starting symbol may be in the production <Start> ::= E to be able to produce the empty sentence

 Can restrict, without loss of generality to productions of the following structure giving a Right Regular Grammar

(1) <non terminal> ::= terminal

(2) <non terminal> ::= terminal <non terminal>

Sentence Generation for $A^n B^n$

\diamond	$<\!\!S\!\!> \rightarrow \varepsilon$	Rule 1
\$	$\begin{array}{l} \textbf{} \rightarrow \textbf{A} \textbf{} \textbf{B} \\ \rightarrow \textbf{A} \textbf{B} \end{array}$	Rule 2 Rule 1
\$	$\begin{array}{l} \textbf{} \rightarrow \textbf{A} \textbf{} \textbf{B} \\ \rightarrow \textbf{A} \textbf{A} \textbf{} \textbf{B} \textbf{B} \\ \rightarrow \textbf{A} \textbf{A} \textbf{B} \textbf{B} \end{array}$	Rule 2 Rule 2 Rule 1
\$	$\begin{array}{c} <\!S\!> \to A <\!S\!> B \\ \to A A <\!S\!> B B \\ \to A A A <\!S\!> B B B \\ \to A A A B B B \end{array}$	Rule 2 Rule 2 Rule 2 Rule 1

٥..

Parsing & Prolog

- Parsing is the opposite of sentence generation
 - » Task is to find a sequence of rules that produce a given sentence
- Prolog has a built-in notation for representing grammar rules called **Definitive Context Grammar (DCG)**

Parsing & Prolog – 2

In a DCG the grammar for Aⁿ Bⁿ is represented as follows

```
(1) S --> [A], [B].
(2) S --> [A], S, [B].
```

Upper case is used in the slide for easier reading, in Prolog lower case (constants) would be used for A and B and not upper case (variables).

DCG Translation

OCG statements are translated into Prolog

```
The following are examples.
\Diamond
    n --> n1 , n2 , ... , nn .
        n (S, Rest) :-
              n1(S, R2), n2(R2, R3), ..., nn(Rn, Rest).
   n --> [ T1 ] , [ T2 ] , ... [ Tn ] .
        n([T1, T2, ..., Tn | Rest], Rest).
    n --> n1 , [ T2 ] , n3 , [ T4] .
        n(S, Rest) :- n1(S, [T2 | R3]), n3(R3, [T4 | Rest]).
    n --> [ T1 ] , n2 , [ T3 ] , n4 .
       n([T1 | R2], Rest) :-
              n2(R2, [T3 | R4]), n4(R4, Rest).
```

Translation of $A^n B^n$

```
S-->[A],[B].
       S-->[A], S, [B].
s ([a, b | Rest], Rest).
       s ([a | R1], Rest) :- s (R1, [b | Rest]).
  Every sentence is represented by 2 lists
\Diamond
   » Difference lists of symbols
       > The first list is the sentence you are parsing
       > The second list is the part of the sentence that
         is left-over when parsing is done
                               s ( [a , b], [ ] ).
                    Sample
                               s([a,a,b,b],[]).
                    queries
                               s ( [a, a, b, b, c], [c] ).
```

Movement example

```
move --> step.
move --> step, move.
step --> [up].
step --> [down].
```

Example queries

move ([up, up, down] , []).
move ([up, up, left] , []).
move ([up, M, up] , []).

Translation

move (List , Rest) :- step (List , Rest).
move (List1 , Rest) :- step (List1 , List2) , move (List2, Rest).
step ([up | Rest] , Rest).
step ([down | Rest] , Rest).

P is a T example using determinants

```
parse (S, Sr) :- det1 (S, S0)
, det2 (S0, S1)
, det3 (S1, S2)
, det4 (S2, Sr).
det1 ([PISt], St).
det2 ([is, a | St], St).
det3 ([T|St], St).
det4 (['.' | St], St).
```

Grammars & Algorithms

- Our of the second se
 - » Snobol language was used to develop a system called MUMPS that was used in hospital applications circa 1960's–1970's

SNOBOL

- In Snobol a grammar is defined to translate (rewrite) an input string of symbols to an output string of symbols
 - » The production rules are applied using the Markov algorithm
 - > Developed during the 1940's as yet another description of what it means to compute
 - » Works in a similar way to Prolog
 - > Pattern matching takes place on strings, instead of compound terms

Markov Algorithm

- Input
 - » A numbered set of productions $\alpha
 ightarrow \beta$

> Numbering is from 1 up

- » An input string maStr over the alphabet
 - > No distinction needed for terminals and nonterminals
- Occupation
 - » The productions are applied to the sequence of strings beginning with the input string
- Output
 - » The resulting string when no production is applicable

Markov Algorithm

PROCEDURE	
VAR j : integer	{ An index to a production.}
; k : integer	{ An index to the occurrence
	of an alpha [j] in maStr.}
; notAtEnd : boolean	{ Goes FALSE when algorithm is done.}

; BEGIN

j := 1 { Start at production 1.}

- ; notAtEnd := true
- ; WHILE notAtEnd DO BEGIN ... DO loop body – see next slide END END

Markov Algorithm Body of Loop

{ Find left most occurrence of alpha.} k := index (maStr, 1 , alpha [j])

- ; IF k = 0 THEN {No alpha, try the next production.} BEGIN j := j+1 {No alpha, try the next production.}
 - ; IF j > prodCount {Do we have a production to try?} THEN notAtEnd := false {No production, stop.} END END

ELSE BEGIN{Found alpha, apply production.}
replace (maStr, beta [j] , k , alpha [j] . length)
j := 1j := 1{Start with first production again.}END

END

© Gunnar Gotshalks

MA Add two binary numbers

- Alphabet
 - **>> 0 1** <- The binary digits.
 - » a <- Remember a 1.
 - » **b** <- Remember a 0.
 - » c <- Remember a carry.
 - » N <- A 1 in the sum.
 - » Z <- A 0 in the sum.
 - **X** <- Separator for the two input numbers.

MA Add two binary numbers – 2

- Productions
 - » a1 -> 1a ; a0 -> 0a ;
 <- Travel right with a one</p>
 - » b1 -> 1b ; b0 -> 0b ;
 <- Travel to right with a zero</p>
 - » 1c -> c0 ; 0c -> 1 ; c -> 1 ; Propagate a carry
 - » 1a -> cZ; 0a -> N; Xa -> N; <- Add one to least sig digit of n2

<- Move least sig digit of

<- Recover all zeros and ones

n1 to add position

- » 1b -> N ; 0b -> Z ; Xb -> Z ; <- Add zero to least sig digit of n2
- » 1X -> Xa ; 0X -> Xb ;
- » N -> 1 ; Z -> 0 ;
- ♦ An input string
 - » 101X1101

SNOBOL – Syntactic Sugar

- Some productions terminate with a period
 - » If such a production is applied, the computation terminates
- Some productions are labeled
- Some productions have success and failure tags
 - » If such a production is applied, the Markov algorithm resumes from the production labeled by the success tag
 - » If such a production is not applied, then the Markov algorithm resumes from the production labeled by the failure tag