© Gunnar Gotshalks

Chat

A program to make Prolog input
English like

A project from Clocksin and Mellish,

page 244 third edition

CH-1



The main predicate— chat

¢ The rule repeats itself until the user enters exactly "Stop."
chat :- repeat
> Get a sentence from the user
, readLine ( Sentence)

> Obtain the semantic form, Clause, from the
external form, Sentence.

, parse ( Clause , Sentence , _)

> Determine the appropriate response.
, respondTo ( Clause )

> chat succeeds when the semantic form is stop
, Clause = stop .

© Gunnar Gotshalks CH-2



readLine ( Sentence)

¢ Read a sentence as a list of words, where each word is
the list of characters in ASCIl numeric code.

¢ Split off the periods, question marks and apostrophes

¢ Create the corresponding list of atoms

readLine ( Sentence ) :- readCharLists ( Words )
, morphs ( Words , Sentence) , ! .

¢ User types John is a person.

0 Words ==> [ [74,111,104,110], [105,115], [97],
[112, 101, 114, 115,111, 110,46 ] ]

¢ Sentence ==> [ John,is,a, person,.]
> John is a constant not a variable

© Gunnar Gotshalks CH-3



readCharLists ( Words )

¢ Read in a list of words from the keyboard and convert
each word to a list of character lists

readCharLists ([ Word | MoreWords ]) :-

> Read a word
readWord ( Word , TerminatingChar )

> end of line (ASCII 10 is newLlIne) signals the end
of the list of words

, ( (TerminatingChar =10 ), MoreWords =[]
; readCharLists ( MoreWords ) ).

¢ MoreWords is a hole
> see parts assembly example

© Gunnar Gotshalks CH-4



readWord( Word, CharList )

¢ Read in a word from the keyboard
readWord ( Word , TerminatingChar ) :- get0 (C)

> Check for end of line or space character
,((C=10;C=32)

> Handle eol and space character cases
, TerminatingChar =C , Word =[]

> Character in a word, get the rest of the word

; readWord ( RestOfWord ,
TerminatingChar )

, Word =[ C | RestOfWord ]) .

© Gunnar Gotshalks CH-5



Morphs ( WordList , AtomList)

¢ Convert list of words (as character lists from
readCharLists, for example) to list of atoms, applying
morphological rules to split off punctuation and the
possessive "'s ",

morphs ([],[]).
morphs ([ Word | RestOfWords ], Atoms ) :-

morph ( Word , Atom )
, morphs ( RestOfWords , RestOfAtoms )
, append ( Atom , RestOfAtoms , Atoms ).

© Gunnar Gotshalks

CH-6



morph ( Word , ItsAtoms )

¢ Convert one word, as a list of characters, to its corresponding
atoms.

> More than one atom occurs when punctuation is
split off, as punctuation is treated as an atom
separately from a word.

morph ([],[])-
morph ( Word , ItsAtoms ) :-

> Use the available rules for morphing a word to a
list of component character lists

morphrules ( Word , WordComponents )

> Convert each list of character codes to its
corresponding atom

, maplist ( name , ltsAtoms , WordComponents ) .

© Gunnar Gotshalks CH-7



morphrules ( CharList , ComponentLists )

¢ ComponentLists is a sequence of sublists of CharList
determined by the splitOff rules

morphrules ( CharList , ComponentLists ) :-

> Do any split off rules apply?
(append ( X, Y, CharList)
, SplitOff (Y)
, ComponentLists =[X,Y] )

> Nothing to split off so only one sublist
; ComponentLists = [ CharList ].

© Gunnar Gotshalks

CH-8



splitOff ( String )

¢ List of strings that are to be split off from words

> Apostrophe s
splitOff ( "'s" ).

> Question mark
splitOff ("?2").

> Period
splitOff (".").

© Gunnar Gotshalks CH-9



maplist (P, Arg1, Arg2)

¢ maplist is a predicate that is the equivalent to the Lisp
mapcar but restricted to one argument

¢ maplist applies the predicate P to every item in Arg1 and
the result is the corresponding item in Arg2.

maplist (_,[],[]).
maplist (P, [H11T1],[H21T2]) :-

> Q is the predicate P (H1, H2). The operator =..
defines the correspondence of the compound
term Q with the list form on the the right.

Q =.[P,H1,H2]
,call (Q)
, maplist (P, T1,T2).

© Gunnar Gotshalks CH-10



Parse rules

¢ The parse rules analyze the list of atoms in a sentence.
The relevant parts are extracted and rearranged for the
respondTo rules.

parse ( semantic_sentence_representation
, the_sentence_to_parse
, remainder_of_sentence)

> First rule creates the term stop to terminate the
program.

parse (stop, ['Stop', "1, []).-

> Last rule matches everything to create the term
noparse for the "Can't parse that" response

parse ( noparse, _ ,_ ).

© Gunnar Gotshalks CH-11



Parsing "_is a

¢ Arule to parse sentences of the form

John is a person.

¢ The parsing part of the rule
parse ( Clause ) -->

thing (Name ) ,[is,a],type(T),["].

¢ Where
thing (Name ) --> [ Name].
type(T) --> [T].

¢ This does not look like Prolog syntax

¢ What is happening?

© Gunnar Gotshalks

CH-12



Parse rule translations

¢ The previous syntax is in the library of predicates that
comes with Edinburgh Prolog

¢ The predicates define a correspondence with the previous
syntax and pure Prolog syntax

Why do we need the predicates?

¢  Writing parsing rules in pure Prolog is tedious

© Gunnar Gotshalks CH-13



Parsing "Pisa T."

¢ Syntax as entered in chat Looks fairly straight forward
parse (Clause) --> [P],[is,a],[T],["'].

¢ lts equivalent in Prolog compared to the translation

parse ( Clause, S, Srem) :- det1 (S, S0)
, det2 (S0, S1), det3(S1,S2), det4 (S2, Srem).

¢ Query: parse(Clause, [ John, is, a, person, '.'], )

det1 ([PISt],St). P=John St=[is,a, person,'']
det2 ([is,al St], St). St =[ person, '.']

det3 ([TISt],St). T=person St=[""]

det4 (['.'I St ], St). St=[]==>Srem =[]

© Gunnar Gotshalks CH-14



Parsing "_is a_." and translation

parse ( Clause ) --> Looks fairly straight forward
thing (Name ) ,[is,a],type(T),[""].

thing (Name ) --> [ Name].

type(T) > [T].

O In Prolog is the foIIowing compared to the translation

parse ( Clause, S, Srem) :-
thing (Name , S, S0 ), det5 (S0, S1)
,type (T, S1,S52), det6 ( S2, Srem ).

thing (Name , S, Srem) :- det7 (S, Srem).
type (T,S,Srem) :- det8 (S, Strem ).

det5 ([is,a]l St], St). det6 (['."]1 St], St).
det7 ([ Name |l St ], St). det8 ([TI St], St).

© Gunnar Gotshalks CH-15



Semantic representation of a parse

¢ We can parse a sentence. So what?

0 Need to get a semantic representation for the parse so
the respondTo can work.

¢ That is the role played by the Clause variable in the parse
rules

© Gunnar Gotshalks CH-16



Parsing "_is a_." and semantics

¢ Query:
parse ( Clause, [ John,is,a,person,''],_ ).

¢ The parsing part of the rule

parse (Clause) --> > Makes the binding
thing (Name ) ,[is,a], Name = John
type (T),["'] T = person
¢ The semantic part of the rule
, { Clause =..[ T, Name ] > Makes the binding
, 1}. Clause

= person ( John)

{...} indicates do not
translate ..., keep as it
is, in the translated rule

© Gunnar Gotshalks CH-17



thing ( X)) & type ( X)

¢ For things we want to check they begin with an upper case
letter (capital letter)

thing ( Name ) -->[ Name ], { capital (Name) }.

¢ For types we want to check that it begins with a lower
case letter.

type(T)-->[T],{not(capital (T))}.

¢ Rule for determining if a letter is an upper case (capital)
letter or not.

> Character with ASCII code less than 96 means it
IS an upper case letter.

capital (Name ) :- name (Name,[FIl_]),F<96.

© Gunnar Gotshalks CH-18



Parsing "A _isa_."

¢ The complete rule for parsing sentences like the following
A woman is a person.
> The parsing part
parse( Clause ) --> ['A'], type (T1),[is,a]
, type (T2),[". ]
> The semantic part

, { Head =.. [T2, X] , Condition =.. [ T1, X ]
, Clause = (Head :- Condition),!}.

¢ The following bindings occur

T1 =woman T2 =person parse

Head = person ( X)) semantics, X is a variable
Condition = woman ( X) semantics, same X
Clause = person ( X ) :-woman ( X) semantics

© Gunnar Gotshalks CH-19



Parsing "Is _a _?"

¢ The complete rule for parsing sentences like the following
Is Mary a person?
> The parsing part

parse( Clause ) --> ['ls'], thing( Name ),[a]
, type(T),["?"]
> The semantic part
,{Goal=..[T, Name ], Clause=('?-'"(Goal ) ),!}.

¢ Using the example the following bindings occur

Name=Mary T =person parse
Goal = person ( Mary ) semantics
Clause = ?-(person ( Mary )) semantics

¢ ?- makes Clause functor unique, correct respondTo is used.

© Gunnar Gotshalks CH-20



RespondTo

¢ The following two clauses are the response to stopping
the program and to not finding a parse.

> The argument is the semantic representation
formed in the semantic part of parse rules

respondTo ( stop ) :- write ('All done.'),nl,!.

respondTo ( noparse ) :-
write ('Can''t parse that.' ), nl, !.

© Gunnar Gotshalks CH-21



RespondTo — enter into database

¢ The following matches all clauses, so it would be last on
the list

> It adds the clause to the database — at the
beginning

respondTo ( Clause ) :- asserta ( Clause)
, write ('Ok' ), nl,!.

¢ assertz(Clause) — add at the end of the database

¢ retract(X) — find a clause in the database that matches the
argument and remove it from the database

© Gunnar Gotshalks CH-22



RespondTo — Yes/No query

¢ Match functor ?- and argument Goal.

> ?- is used to provide a respondTo to correspond
to a particular parse rule.

> The operator -> tries to establish the goals to its
left. If they succeed, then the goals to its right
are attempted

respondTo ('?-' (Goal ) ) :-
( Goal -> write ('Yes') ; write ('No'))
,1,nl,nl.

¢ In the case of the "Is Mary a person?" query we only
need a yes and no answer.

© Gunnar Gotshalks CH-23



