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Accumulators!
More on Arithmetic!

and!
Recursion!



Acc-2	

© Gunnar Gotshalks!

listlen ( L , N )!

◊  L is a list of length N if ...!
   listlen ( [ ] ,  0 ).!
   listlen ( [ H | T ] , N ) :-  listlen ( T , N1 ) , N is N1 + 1.!

> On searching for the goal, the list is reduced to 
empty!

> On back substitution, once the goal is found, 
the counter is incremented from 0!

◊  Following is an example sequence of goals (left hand 
column) and back substitution (right hand column)!

   listlen( [ a, b, c ] ,  N ).  N  <== N1 + 1  
listlen( [ b, c ] , N1 ).     N1 <== N2 + 1  
listlen( [ c ] , N2 ).         N2 <== N3 + 1  
listlen( [] , N3 ).             N3 <== 0!
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Abstract the counter!

◊  The following abstracts the counter part from listlen.!
   addUp ( 0 ).!
   addUp ( C )  :-  addUp ( C1 ) , C is C1 + 1.!

◊  Notice the recursive definition occurs on a counter one 
smaller than in the head.!



Acc-4	

© Gunnar Gotshalks!

◊  An alternate method is to count on the way to the fixed point 
value in the query!

◊  The accumulator accumulates the result on the way to the goal.!
adder ( C )  :-  adder ( 0 , C ).        Introduce accumulator!
adder ( C , C )  :-  nl , write ( 'a ' ).!

> The goal is reached when the accumulator reaches 
the fixed point count value!

adder ( Acc1 , C )  :-  write ( 'b ' ) , Acc2 is Acc1 + 1  
                                                    , adder ( Acc2 , C ).!

> The predicates in black always succeed, side effect is 
to write to the terminal – can see order of rule 
execution!

Count Up!
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listLen(L,N) – 2!

◊  We can define list length using an accumulator!
   listln ( L , N )  :-  lenacc ( L , 0 , N ).!

>   Introduce the accumulator  
Invariant: length ( L ) +  accumulator = N!

   lenacc ( [] , A , A ).!
   lenacc ( [ H | T ] , A , N )  :-  A1 is A + 1  

                                            , lenacc ( T , A1 , N ).!

◊  Following is a sequence of goals!
   listln  ( [ a , b , c ] ,  N ).  

lenacc ( [ a ,  b , c ] , 0 , N ). !N <== N1  
lenacc ( [ b , c ] , 1 , N1 ).    !N1 <== N2  
lenacc ( [ c ] , 2 , N2 ).          !N2 <== N3  
lenacc ( [] , 3 , N3 ).             !N3 <== 3!
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Sum a List of Numbers – no accumulator!

◊  sumList ( List , Total ) asserts List is a list of numbers 
and Total = + / List .!

sumList ( [ ] , 0 ).!
sumList ( [ First | Rest ] , Total ) :- 

  sumList ( Rest , Rest_total ) ,!
      Total is First + Rest_total.!
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Sum a List of Numbers – with accumulator!

◊  sumList ( List , Total ) asserts List is a list of numbers 
and Total = + / List .!
» Use an accumulator!
» Here sumList asserts   Total = (+ / List ) + Acc!

sumList ( List , Total ) :- sumList ( List , 0 , Total ). !
sumList ( [ ] , Acc , Acc ).!
sumList(  [ First | Rest ] , Acc , Total ) :- 

  NewAcc is Acc + First , 
  sumList ( Rest , NewAcc , Total ).!
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A base case stops recursion!

◊  A base case is one that stops recursion!
» This is a more general notion than the smallest 

problem.!

◊  Generate a sequence of integers from 0 to E, inclusive.!
» Need to stop recursion when we have reached E.!

!numInRange ( N , E ) :- addUpToN ( 0 , N , E ).!
!addUpToE ( Acc , Acc , _ ). !!
!addUpToE ( Acc , N , E ) :- Acc < E ,!

                  ! !              Acc1 is Acc + 1 ,!
                                                 addUpToE ( Acc1 , N , E ).!

Base case, no recursion!

Need guard to prevent 
selecting this rule to 
prevent recursion!
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Accumulator – Using vs Not Using!

◊  The definition styles reflect two alternate definitions for counting!
»  Recursion – counts (accumulates) on back substitution.!

>  Goal becomes smaller problem!
>  Do not use accumulator!

»  Iteration – counts up, accumulates on the way to the goal!
>  Accumulate from nothing up to the goal!
>  Goal “counter value” does not change!
!

◊  Some problems require an accumulator !
»  Parts explosion problem!
»  Need intermediate results during accumulation!

>  Partial sums of a list of numbers!
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Factorial using recursion!

◊  Following is a recursive definition of factorial!
   Factorial ( N )  =  N * Factorial ( N – 1 )!
    

    factr ( N , F)  -- F is the factorial of N!
   factr ( 0 , 1 ).!
   factr ( N , F )  :-  J  is  N – 1  ,   factr ( J , F1 ) 

                         , F  is  N * F1. 
!

◊  The problem  ( J , F1 ) is a smaller version of ( N , F )!
◊  Work toward the fixed point of a trivial problem!

◊  Does not work for  factr ( N ,120 )  and  factr ( N , F ).!
» Cannot do arithmetic  J is N – 1  because N is 

undefined.!
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Factorial using iteration – accumulators!

◊  An iterative definition of factorial!
   facti ( N , F )  :-  facti ( 0 , 1 , N , F ). 

facti ( N , F , N , F ). 
facti ( I , Fi , N , F )  :-  invariant ( I , Fi , J , Fj )  
                                   ,  facti ( J , Fj , N , F ).!

   invariant ( I , Fi , J , Fj )  :-  J  is  I + 1 ,  Fj  is  J * Fi. !

◊  The last two arguments are the goal and they remain the 
same throughout.!

◊  The first two arguments are the accumulator and they start 
from a fixed point and accumulate the result!

◊  Works for  queries  facti ( N ,120 )  and  facti ( N , F ) 
because values are always defined for the is operator.!
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Fibonacci – Ordinary Recursion!

◊  Following is a recursive definition of the Fibonacci series. 
For reference here are the first few terms of the series!
   Index – 0   1   2   3   4    5   6    7    8    9  10    11    12  

Value – 1  1   2    3   5   8  13  21  34  55  89  144  233!
   Fibonacci ( N ) = Fibonacci ( N – 1 ) 

                            + Fibonacci ( N – 2 ).!

   fib ( 0 , 1 ). 
fib ( 1 , 1 ). 
fib ( N , F )  :-  N1  is  N – 1 ,  N2  is  N – 2  
                      ,  fib ( N1 , F1 ) , fib ( N2 , F2 ) 
                      ,  F  is  F1 + F2.!

◊  Does not work for  queries  fib ( N , 8 )  and  fib ( N , F )!
» Values for  is  operator are undefined.!
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Fibonacci – Tail Recursion!

◊  A tail recursive definition of the Fibonacci series!
> Tail recursion is equivalent to iteration!

   fibt ( 0 , 1 ). 
fibt ( 1 , 1 ). 
fibt ( N , F )  :-  fibt ( 2 , 1 , 1 , N , F ).!

   fibt ( N , Last2 , Last1 , N , F )  :-  F  is  Last2 + Last1.!
   fibt ( I , Last2 , Last1 , N , F )  :-  J  is  I + 1!
                                                ,  Fi  is  Last2 + Last1!
                                                ,  fibt ( J , Last1 , Fi , N , F ).!

◊  Works for  queries  fibt ( N , 120 )  and  fibt ( N , F ) !
»   values are always defined for is operator.!
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Parts Explosion – The Problem!

◊  Parts explosion is the problem of accumulating all the parts for a 
product from a definition of the components of each part!
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Snow Blower Parts View 1!
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Snow Blower Parts View 2!
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Bicycle Parts!
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Parts Explosion – Example!

◊  Consider a bicycle we could have!
>  the following basic components!

   basicPart( spokes ).   basicPart( rim ).   basicPart( tire ).!
   basicPart( inner_tube ).   basicPart( handle_bar ).!
   basicPart( front_ fork ).  basicPart( rear_fork ). 
!

>  the following definitions for sub assemblies!
   assembly( bike, [ wheel, wheel, frame ]  ).!
   assembly( wheel, [ spokes, rim, wheel_cushion ]  ).!
   assembly( wheel_cushion, [ inner_tube, tire ]  ).!
   assembly( frame, [ handle_bar, front_fork, rear_fork ]  ).!
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Parts Explosion – The Problem 2!

◊  We are interest in obtaining a parts list for a bicycle.!
   [ rear_ fork , front_ fork , handle_bar , tire  

, inner_tube , rim , spokes , tire , inner_tube , rim 
, spokes ]!

> We have two wheels so there are two tires, 
inner_tubes, rims and spokes.!

◊  Using accumulators we can avoid wasteful re-computation 
as in the case for the ordinary recursion definition of the 
Fibonacci series!
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Parts Explosion – Accumulator 1!

◊  partsof ( X ,P ) – P is the list of parts for item X!

◊  partsacc ( X , A , P ) – parts_of ( X ) || A = P.!
   partsof ( X , P )  :-  partsacc ( X , [] , P ).!

> Basic part – parts list contains the part!
   partsacc ( X , A , [ X | A ] )  :-  basicPart ( X ).!

> Not a basic part – find the components of the part!
   partsacc ( X , A , P )  :-  assembly ( X , Subparts ) ,!

> parsacclist – parts_of ( Subparts ) || A = P!
                                      partsacclist ( Subparts , A , P ).!

||  is catenate  
(math append)!
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Parts Explosion –  Accumulator 2!

◊  parsacclist ( ListOfParts , AccParts , P ) 
 

 –  parts_of ( ListOfParts ) || AccParts = P 
!

> No parts       no change in accumulator!
   partsacclist ( [ ] , A , A ).!

   partsacclist ( [ Head | Tail ] , A , Total ) :- !
> Get the parts for the first on the list!

                         partsacc ( Head , A , HeadParts )!

> And catenate with the parts obtained from the 
rest of the ListOfParts!

                        , partsacclist ( Tail , HeadParts , Total ).!

⇒



Acc-22	

© Gunnar Gotshalks!

Reverse a list with an accumulator!

◊  Define the predicate reverse ( List , ReversedList ) that 
asserts ReversedList is the List in reverse order. 
!
reverse ( List , Reversed ) :- 
! !reverse ( List , [ ] , Reversed ) . 

!

reverse ( [ ] , Reversed , Reversed ) . 
!

! !reverse ( [ Head | Tail] ) || SoFar = Reversed!
reverse ( [ Head | Tail ] , SoFar , Reversed ) :- 
!reverse ( Tail , [ Head | SoFar ] , Reversed ) .!

!
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Reverse a list without accumulator!

◊  Define the predicate reverse ( List , ReversedList ) that 
asserts ReversedList is the List in reverse order. 
!

reverse ( [ ] , [] ) . 
!

reverse ( [ Head | Tail ] , ReversedList ) :- 
!reverse ( Tail , ReversedTail ) , 

   append ( ReversedTail , [ Head ] , ReversedList ) . 
!

◊  Note the extra list traversal required by append compared 
to the accumulator version.!
!
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Difference Lists and Holes !

◊  The accumulator in the parts explosion program is a stack!
»  Items are stored in the reverse order in which they 

are found!

◊  How do we store accumulated items in the same order in 
which they are formed?!
» Use a queue!

◊  Difference lists with holes are equivalent to a queue!
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Examples for Holes!

◊  Consider the following list!
   [ a , b , c , d  |  X ]!

> X is a variable indicating the tail of the list.  It is 
like a hole that can be filled in once a value for X 
is obtained!

◊  For example!
     Res  =  [ a , b , c , d  |  X ]  ,  X  =  [ e , f ].!

> Yields!
Res = [ a , b , c , d , e , f ]!
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Examples for Holes – 2!

◊  Or could have the following with the hole going down the 
list!
   Res  =  [ a , b , c , d  |  X ]!

> more goal searching gives   X  =  [ e , f  | Y ]!
> more goal searching gives   Y  =  [ h , i , j ]!
> Back substitution Yields  

 

Res = [ a , b , c , d , e , f , h , i , j ]!
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Efficiency of List Concatenation!

◊  Consider the definition of append!
> The concatenation of lists is inefficient when the 

first list is long!

   append ( [] , L , L ). !
	



   append ( [ X | L1 ] , L2 , [ X | L3 ] ) 
           :-  append ( L1 , L2 , L3 ) .!

>  If we could skip the entire first part of the list in 
a single step, then concatenation of lists would 
be efficient!
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Difference Lists Representation!

◊  The list L!
» L = [ a, b, c ]!

◊  Can be represented by two lists!
» L1 = [ a, b, c, d, e ] !L1 = [ a, b, c ]!
» L2 = [ d, e] ! !L2 = [ ]!
» L = L1 – L2 ! !L = L1 – L2!

◊  In fact L2 can be anything, so we can have the following!
» L = [ a, b, c, d, e | T ] – [ d, e | T]!
» L = [ a, b, c | T ] – T 

◊  The empty list [ ] = L – L, for any L!



Acc-29	

© Gunnar Gotshalks!

Difference Lists!

                S1                   E1  S2                  E2  
!

(1) concat( S1 – E1 , S2 – E2 , S1 – E2)  with E1 = S2!

    L1 = [ A , B , C ]  = [ A , B , C  |  R1 ] – R1  
L2 = [ D , E ] = [ D , E  |  R2 ] – R2!

Pattern match (1) with (2)!

(2) concat([ A , B , C  |  R1 ] –  R1 , [ D , E  | R2 ] – R2 , CL)  
Using E1 = S2 we get !

      R1 = [ D , E  | R2 ]  
 CL = [ A , B , C  , D , E  | R2 ]  –  R2!
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Parts Explosion – Difference List 1!

◊  partsofd (X , P ) – P is the list of parts for item X!

◊  partsdiff ( X , Hole , P ) – parts_of ( X ) || Hole = P 
!

> Hole and P are reversed compared to Clocksin 
& Mellish (v5) to better compare with 
accumulator version.!

   partsofd ( X , P )  :-  partsdiff ( X , [ ] , P ). 
!

> Base case we have a basic part, then the parts 
list contains the part!

   partsdiff ( X , Hole , [ X | Hole ] )  :-  basicPart ( X ).!
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Parts Explosion – Difference List 2!

> Not a base part, so we find the components of the 
part!

    

partsdiff ( X , Hole , P )  :-  assembly ( X , Subparts ) 
!

> parsdifflistd – parts_of ( Subparts ) || Hole = P 
!

                               ,  partsdifflist ( Subparts , Hole , P ).!
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Parts Explosion – Difference Lists 3!

◊  parsdifflist (ListOfParts , Hole , P ) 
–  parts_of ( ListOfParts ) || Hole = P!

    

partsdifflist ( [ ] , Hole , Hole ).!
   partsdifflist ( [ Head | Tail ] , Hole , Total ) :-!

> Get the parts for the first on the list!
                           partsdiff ( Head , Hole1 , Total )!

> And catenate with the parts obtained from the 
rest of the ListOfParts!

                        ,  partsdifflist ( Tail , Hole , Hole1 ).!
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Compare Accumulator with Hole!

     	


partsof   ( X ,  P )  :-  partsacc   ( X ,  [ ] ,  P ).      Accumulator	


partsofd ( X , P )   :-  partsdiff  ( X ,  [ ] ,  P ).      Difference/Hole	


	


	


partsacc   ( X ,   A    ,  [ X | A ] )      :-  basicPart ( X ).	


partsdiff ( X , Hole , [ X | Hole ] )   :-  basicPart ( X ).	


	


	


partsacc   ( X ,  A     , P )  :-  assembly (  X ,  Subparts )	


                                             ,  partsacclist  ( Subparts ,  A     , P ).	


	


partsdiff ( X , Hole , P )  :-   assembly (  X ,  Subparts )	


                                            ,  partsdifflist ( Subparts , Hole , P ).	
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Compare Accumulator with Hole – 2!

partsacclist  ( [ ]  ,     A    ,   A    ).	


partsdifflist (  [ ]  ,  Hole , Hole ).	


	


	


partsacclist   ( [ Head | Tail ] ,   A    , Total )���

                        :-  partsacc  ( Head ,    A     , HeadParts )	


                               ,  partsacclist  ( Tail , HeadParts , Total ).	


	


partsdifflist ( [ Head | Tail ] , Hole , Total )���

                       :-  partsdiff ( Head ,  Hole1 ,     Total      )	


                            ,   partsdifflist ( Tail  ,    Hole   ,  Hole1 ).	




