
Acc-1	

© Gunnar Gotshalks!

Accumulators!
More on Arithmetic!

and!
Recursion!

Acc-2	

© Gunnar Gotshalks!

listlen (L , N)!

◊  L is a list of length N if ...!
   listlen ([] , 0).!
   listlen ([H | T] , N) :- listlen (T , N1) , N is N1 + 1.!

> On searching for the goal, the list is reduced to
empty!

> On back substitution, once the goal is found,
the counter is incremented from 0!

◊  Following is an example sequence of goals (left hand
column) and back substitution (right hand column)!

   listlen([a, b, c] , N). N <== N1 + 1  
listlen([b, c] , N1). N1 <== N2 + 1  
listlen([c] , N2). N2 <== N3 + 1  
listlen([] , N3). N3 <== 0!

Acc-3	

© Gunnar Gotshalks!

Abstract the counter!

◊  The following abstracts the counter part from listlen.!
   addUp (0).!
   addUp (C) :- addUp (C1) , C is C1 + 1.!

◊  Notice the recursive definition occurs on a counter one
smaller than in the head.!

Acc-4	

© Gunnar Gotshalks!

◊  An alternate method is to count on the way to the fixed point
value in the query!

◊  The accumulator accumulates the result on the way to the goal.!
adder (C) :- adder (0 , C). Introduce accumulator!
adder (C , C) :- nl , write ('a ').!

> The goal is reached when the accumulator reaches
the fixed point count value!

adder (Acc1 , C) :- write ('b ') , Acc2 is Acc1 + 1  
 , adder (Acc2 , C).!

> The predicates in black always succeed, side effect is
to write to the terminal – can see order of rule
execution!

Count Up!

Acc-5	

© Gunnar Gotshalks!

listLen(L,N) – 2!

◊  We can define list length using an accumulator!
   listln (L , N) :- lenacc (L , 0 , N).!

>  Introduce the accumulator  
Invariant: length (L) + accumulator = N!

   lenacc ([] , A , A).!
   lenacc ([H | T] , A , N) :- A1 is A + 1  

 , lenacc (T , A1 , N).!

◊  Following is a sequence of goals!
   listln ([a , b , c] , N).  

lenacc ([a , b , c] , 0 , N). !N <== N1  
lenacc ([b , c] , 1 , N1). !N1 <== N2  
lenacc ([c] , 2 , N2). !N2 <== N3  
lenacc ([] , 3 , N3). !N3 <== 3!

Acc-6	

© Gunnar Gotshalks!

Sum a List of Numbers – no accumulator!

◊  sumList (List , Total) asserts List is a list of numbers 
and Total = + / List .!

sumList ([] , 0).!
sumList ([First | Rest] , Total) :- 

 sumList (Rest , Rest_total) ,!
 Total is First + Rest_total.!

Acc-7	

© Gunnar Gotshalks!

Sum a List of Numbers – with accumulator!

◊  sumList (List , Total) asserts List is a list of numbers 
and Total = + / List .!
» Use an accumulator!
» Here sumList asserts Total = (+ / List) + Acc!

sumList (List , Total) :- sumList (List , 0 , Total). !
sumList ([] , Acc , Acc).!
sumList([First | Rest] , Acc , Total) :- 

 NewAcc is Acc + First , 
 sumList (Rest , NewAcc , Total).!

Acc-8	

© Gunnar Gotshalks!

A base case stops recursion!

◊  A base case is one that stops recursion!
» This is a more general notion than the smallest

problem.!

◊  Generate a sequence of integers from 0 to E, inclusive.!
» Need to stop recursion when we have reached E.!

!numInRange (N , E) :- addUpToN (0 , N , E).!
!addUpToE (Acc , Acc , _). !!
!addUpToE (Acc , N , E) :- Acc < E ,!

 ! ! Acc1 is Acc + 1 ,!
 addUpToE (Acc1 , N , E).!

Base case, no recursion!

Need guard to prevent 
selecting this rule to 
prevent recursion!

Acc-9	

© Gunnar Gotshalks!

Accumulator – Using vs Not Using!

◊  The definition styles reflect two alternate definitions for counting!
»  Recursion – counts (accumulates) on back substitution.!

>  Goal becomes smaller problem!
>  Do not use accumulator!

»  Iteration – counts up, accumulates on the way to the goal!
>  Accumulate from nothing up to the goal!
>  Goal “counter value” does not change!
!

◊  Some problems require an accumulator !
»  Parts explosion problem!
»  Need intermediate results during accumulation!

>  Partial sums of a list of numbers!

Acc-10	

© Gunnar Gotshalks!

Factorial using recursion!

◊  Following is a recursive definition of factorial!
   Factorial (N) = N * Factorial (N – 1)!
    

 factr (N , F) -- F is the factorial of N!
   factr (0 , 1).!
   factr (N , F) :- J is N – 1 , factr (J , F1) 

 , F is N * F1. 
!

◊  The problem (J , F1) is a smaller version of (N , F)!
◊  Work toward the fixed point of a trivial problem!

◊  Does not work for factr (N ,120) and factr (N , F).!
» Cannot do arithmetic J is N – 1 because N is

undefined.!

Acc-11	

© Gunnar Gotshalks!

Factorial using iteration – accumulators!

◊  An iterative definition of factorial!
   facti (N , F) :- facti (0 , 1 , N , F). 

facti (N , F , N , F). 
facti (I , Fi , N , F) :- invariant (I , Fi , J , Fj)  
 , facti (J , Fj , N , F).!

   invariant (I , Fi , J , Fj) :- J is I + 1 , Fj is J * Fi. !

◊  The last two arguments are the goal and they remain the
same throughout.!

◊  The first two arguments are the accumulator and they start
from a fixed point and accumulate the result!

◊  Works for queries facti (N ,120) and facti (N , F)
because values are always defined for the is operator.!

Acc-12	

© Gunnar Gotshalks!

Fibonacci – Ordinary Recursion!

◊  Following is a recursive definition of the Fibonacci series.
For reference here are the first few terms of the series!
   Index – 0 1 2 3 4 5 6 7 8 9 10 11 12  

Value – 1 1 2 3 5 8 13 21 34 55 89 144 233!
   Fibonacci (N) = Fibonacci (N – 1) 

 + Fibonacci (N – 2).!

   fib (0 , 1). 
fib (1 , 1). 
fib (N , F) :- N1 is N – 1 , N2 is N – 2  
 , fib (N1 , F1) , fib (N2 , F2) 
 , F is F1 + F2.!

◊  Does not work for queries fib (N , 8) and fib (N , F)!
» Values for is operator are undefined.!

Acc-13	

© Gunnar Gotshalks!

Fibonacci – Tail Recursion!

◊  A tail recursive definition of the Fibonacci series!
> Tail recursion is equivalent to iteration!

   fibt (0 , 1). 
fibt (1 , 1). 
fibt (N , F) :- fibt (2 , 1 , 1 , N , F).!

   fibt (N , Last2 , Last1 , N , F) :- F is Last2 + Last1.!
   fibt (I , Last2 , Last1 , N , F) :- J is I + 1!
   , Fi is Last2 + Last1!
   , fibt (J , Last1 , Fi , N , F).!

◊  Works for queries fibt (N , 120) and fibt (N , F) !
»  values are always defined for is operator.!

Acc-14	

© Gunnar Gotshalks!

Parts Explosion – The Problem!

◊  Parts explosion is the problem of accumulating all the parts for a
product from a definition of the components of each part!

Acc-15	

© Gunnar Gotshalks!

Snow Blower Parts View 1!

Acc-16	

© Gunnar Gotshalks!

Snow Blower Parts View 2!

Acc-17	

© Gunnar Gotshalks!

Bicycle Parts!

Acc-18	

© Gunnar Gotshalks!

Parts Explosion – Example!

◊  Consider a bicycle we could have!
>  the following basic components!

   basicPart(spokes). basicPart(rim). basicPart(tire).!
   basicPart(inner_tube). basicPart(handle_bar).!
   basicPart(front_ fork). basicPart(rear_fork). 
!

>  the following definitions for sub assemblies!
   assembly(bike, [wheel, wheel, frame]).!
   assembly(wheel, [spokes, rim, wheel_cushion]).!
   assembly(wheel_cushion, [inner_tube, tire]).!
   assembly(frame, [handle_bar, front_fork, rear_fork]).!

Acc-19	

© Gunnar Gotshalks!

Parts Explosion – The Problem 2!

◊  We are interest in obtaining a parts list for a bicycle.!
   [rear_ fork , front_ fork , handle_bar , tire  

, inner_tube , rim , spokes , tire , inner_tube , rim 
, spokes]!

> We have two wheels so there are two tires,
inner_tubes, rims and spokes.!

◊  Using accumulators we can avoid wasteful re-computation
as in the case for the ordinary recursion definition of the
Fibonacci series!

Acc-20	

© Gunnar Gotshalks!

Parts Explosion – Accumulator 1!

◊  partsof (X ,P) – P is the list of parts for item X!

◊  partsacc (X , A , P) – parts_of (X) || A = P.!
   partsof (X , P) :- partsacc (X , [] , P).!

> Basic part – parts list contains the part!
   partsacc (X , A , [X | A]) :- basicPart (X).!

> Not a basic part – find the components of the part!
   partsacc (X , A , P) :- assembly (X , Subparts) ,!

> parsacclist – parts_of (Subparts) || A = P!
   partsacclist (Subparts , A , P).!

|| is catenate  
(math append)!

Acc-21	

© Gunnar Gotshalks!

Parts Explosion – Accumulator 2!

◊  parsacclist (ListOfParts , AccParts , P) 
 

 – parts_of (ListOfParts) || AccParts = P 
!

> No parts no change in accumulator!
   partsacclist ([] , A , A).!

   partsacclist ([Head | Tail] , A , Total) :- !
> Get the parts for the first on the list!

   partsacc (Head , A , HeadParts)!

> And catenate with the parts obtained from the
rest of the ListOfParts!

   , partsacclist (Tail , HeadParts , Total).!

⇒

Acc-22	

© Gunnar Gotshalks!

Reverse a list with an accumulator!

◊  Define the predicate reverse (List , ReversedList) that
asserts ReversedList is the List in reverse order. 
!
reverse (List , Reversed) :- 
! !reverse (List , [] , Reversed) . 

!

reverse ([] , Reversed , Reversed) . 
!

! !reverse ([Head | Tail]) || SoFar = Reversed!
reverse ([Head | Tail] , SoFar , Reversed) :- 
!reverse (Tail , [Head | SoFar] , Reversed) .!

!

Acc-23	

© Gunnar Gotshalks!

Reverse a list without accumulator!

◊  Define the predicate reverse (List , ReversedList) that
asserts ReversedList is the List in reverse order. 
!

reverse ([] , []) . 
!

reverse ([Head | Tail] , ReversedList) :- 
!reverse (Tail , ReversedTail) , 

 append (ReversedTail , [Head] , ReversedList) . 
!

◊  Note the extra list traversal required by append compared
to the accumulator version.!
!

Acc-24	

© Gunnar Gotshalks!

Difference Lists and Holes !

◊  The accumulator in the parts explosion program is a stack!
»  Items are stored in the reverse order in which they

are found!

◊  How do we store accumulated items in the same order in
which they are formed?!
» Use a queue!

◊  Difference lists with holes are equivalent to a queue!

Acc-25	

© Gunnar Gotshalks!

Examples for Holes!

◊  Consider the following list!
   [a , b , c , d | X]!

> X is a variable indicating the tail of the list. It is
like a hole that can be filled in once a value for X
is obtained!

◊  For example!
   Res = [a , b , c , d | X] , X = [e , f].!

> Yields!
Res = [a , b , c , d , e , f]!

Acc-26	

© Gunnar Gotshalks!

Examples for Holes – 2!

◊  Or could have the following with the hole going down the
list!
   Res = [a , b , c , d | X]!

> more goal searching gives X = [e , f | Y]!
> more goal searching gives Y = [h , i , j]!
> Back substitution Yields  

 

Res = [a , b , c , d , e , f , h , i , j]!

Acc-27	

© Gunnar Gotshalks!

Efficiency of List Concatenation!

◊  Consider the definition of append!
> The concatenation of lists is inefficient when the

first list is long!

   append ([] , L , L). !
	

   append ([X | L1] , L2 , [X | L3]) 
 :- append (L1 , L2 , L3) .!

>  If we could skip the entire first part of the list in
a single step, then concatenation of lists would
be efficient!

Acc-28	

© Gunnar Gotshalks!

Difference Lists Representation!

◊  The list L!
» L = [a, b, c]!

◊  Can be represented by two lists!
» L1 = [a, b, c, d, e] !L1 = [a, b, c]!
» L2 = [d, e] ! !L2 = []!
» L = L1 – L2 ! !L = L1 – L2!

◊  In fact L2 can be anything, so we can have the following!
» L = [a, b, c, d, e | T] – [d, e | T]!
» L = [a, b, c | T] – T

◊  The empty list [] = L – L, for any L!

Acc-29	

© Gunnar Gotshalks!

Difference Lists!

 S1 E1 S2 E2  
!

(1) concat(S1 – E1 , S2 – E2 , S1 – E2) with E1 = S2!

 L1 = [A , B , C] = [A , B , C | R1] – R1  
L2 = [D , E] = [D , E | R2] – R2!

Pattern match (1) with (2)!

(2) concat([A , B , C | R1] – R1 , [D , E | R2] – R2 , CL)  
Using E1 = S2 we get !

 R1 = [D , E | R2]  
 CL = [A , B , C , D , E | R2] – R2!

Acc-30	

© Gunnar Gotshalks!

Parts Explosion – Difference List 1!

◊  partsofd (X , P) – P is the list of parts for item X!

◊  partsdiff (X , Hole , P) – parts_of (X) || Hole = P 
!

> Hole and P are reversed compared to Clocksin
& Mellish (v5) to better compare with
accumulator version.!

   partsofd (X , P) :- partsdiff (X , [] , P). 
!

> Base case we have a basic part, then the parts
list contains the part!

   partsdiff (X , Hole , [X | Hole]) :- basicPart (X).!

Acc-31	

© Gunnar Gotshalks!

Parts Explosion – Difference List 2!

> Not a base part, so we find the components of the
part!

    

partsdiff (X , Hole , P) :- assembly (X , Subparts) 
!

> parsdifflistd – parts_of (Subparts) || Hole = P 
!

   , partsdifflist (Subparts , Hole , P).!

Acc-32	

© Gunnar Gotshalks!

Parts Explosion – Difference Lists 3!

◊  parsdifflist (ListOfParts , Hole , P) 
– parts_of (ListOfParts) || Hole = P!

    

partsdifflist ([] , Hole , Hole).!
   partsdifflist ([Head | Tail] , Hole , Total) :-!

> Get the parts for the first on the list!
   partsdiff (Head , Hole1 , Total)!

> And catenate with the parts obtained from the
rest of the ListOfParts!

   , partsdifflist (Tail , Hole , Hole1).!

Acc-33	

© Gunnar Gotshalks!

Compare Accumulator with Hole!

 	

partsof (X , P) :- partsacc (X , [] , P). Accumulator	

partsofd (X , P) :- partsdiff (X , [] , P). Difference/Hole	

	

	

partsacc (X , A , [X | A]) :- basicPart (X).	

partsdiff (X , Hole , [X | Hole]) :- basicPart (X).	

	

	

partsacc (X , A , P) :- assembly (X , Subparts)	

 , partsacclist (Subparts , A , P).	

	

partsdiff (X , Hole , P) :- assembly (X , Subparts)	

 , partsdifflist (Subparts , Hole , P).	

Acc-34	

© Gunnar Gotshalks!

Compare Accumulator with Hole – 2!

partsacclist ([] , A , A).	

partsdifflist ([] , Hole , Hole).	

	

	

partsacclist ([Head | Tail] , A , Total)���

 :- partsacc (Head , A , HeadParts)	

 , partsacclist (Tail , HeadParts , Total).	

	

partsdifflist ([Head | Tail] , Hole , Total)���

 :- partsdiff (Head , Hole1 , Total)	

 , partsdifflist (Tail , Hole , Hole1).	

