
UT-1	
© Gunnar Gotshalks!

List utility predicates!

UT-2	
© Gunnar Gotshalks!

member (X , L)!

◊  Item X is a member of the list L.!
Reduce the list – second rule –  
until first in list – first rule. 
 or empty – no rule so fail –  
 !
   member (X , [X | _]).!
   member (X , [_ | RL]) :- member (X , RL).!

◊  Note the use of the anonymous variable _!
» We do not care about the value of the rest in the

first rule, nor the value of first in the second rule!
» Typically use it when it is the only instance of that

variable in the rule!

UT-3	
© Gunnar Gotshalks!

append (L1, L2 , R)!

◊  R is the result of appending list L2 to the end of list L1.!

   append ([] , L , L). !
–  Appending to nil yields the original list.	

   append ([X | L1] , L2 , [X | L3]) 
 :- append (L1 , L2 , L3) .!

> Simultaneous recursive descent on L1 & L3 first
of the left list is the first of the result. 
!

   Pattern 
 L1 = a b c L2 = 2 3 4 5 L3 = a b c 2 3 4 5!

   = [a | [b, c]] ! ! = [a | [b, c, 2, 3, 4, 5]]!

UT-4	
© Gunnar Gotshalks!

append (L1 , L2 , R) – 2!

◊  Queries – ask for results in all combinations. Not like Java
or C where functions are programmed for only one query 
!
   append ([1 , 2 , 3] , [a , b , c] , R). !

> What is the result of appending L1 and L2?!

   append (L1 , [a , b , c] , [1 , 2 , 3 , a , b , c]). !
> What L1 gives [1 , 2 , 3 , a , b , c] when

appended with [a , b , c] ?!

   append ([1 , 2 , 3] , L2 , [1 , 2 , 3 , a , b , c]). !
> What L2 gives [1 , 2 , 3 , a , b , c] when

appended to [1 , 2 , 3] ?!

UT-5	
© Gunnar Gotshalks!

append (L1 , L2 , R) – 3!

   append (L1 , L2 , [1 , 2 , 3 , a , b , c]). !
> What L1 and L2 gives [1 , 2 , 3 , a , b , c] when

L2 is appended to L1?!

   append (L1 , L2 , R). !
> What L1 and L2 give R? Infinite number of

answers!

   append (Before , [Middle | After] , List). !
>  If middle is defined we can get the before and

after!
   append (Before , [4 | After] , [1,2,3,4,5,6,7]). !

UT-6	
© Gunnar Gotshalks!

Last predicate defined using append!

◊  Define the predicate Last (Item , List) that asserts Item
is the last element of the list List. 
!
Last (Item , List) :- append (_ , [Item] , List) .!

!

UT-7	
© Gunnar Gotshalks!

Shift predicate using append!

◊  Define the predicate shift (List , Shifted) that asserts
Shifted is the List rotated by one element to the left. 
!
!shift ([Head | Tail] , Shifted) :- 
! !append (Tail , [Head] , Shifted) .!

UT-8	
© Gunnar Gotshalks!

Reverse predicate using append!

◊  Define the predicate reverse (List , ReversedList) that
asserts ReversedList is the List in reverse order. 
!
reverse ([] , []) .!
reverse ([Head | Tail] , Reversed) :- 
! reverse (Tail , ReversedTail) , 

 append (ReversedTail , [Head] , Reversed) .!

UT-9	
© Gunnar Gotshalks!

Trace – append (P, [a] , [1 , 2 , 3 , a])!

◊  Variables are renamed every time a rule is used for
matching!
   append ([] , L , L).  

append ([X | L1] , L2 , [X | L3]) 
 :- append (L1 , L2 , L3).!

◊  Try to match rule 1  
 P = [] [a] = L_1 [1,2,3,a] = L_1!

From query = From rule	

◊  1 – Fail, try to match rule 2  
 P = [X_2 | L1_2] [a] = L2_2 [1,2,3,a] = [X_2 | L3_2]!
» Succeed with X_2 = 1 L2_2 = [a] L3_2 = [2,3,a]!

UT-10	
© Gunnar Gotshalks!

Trace – append (P, [a] , [1 , 2 , 3 , a]) – 2!

   append ([] , L , L).  
append ([X | L1] , L2 , [X | L3]) 
 :- append (L1 , L2 , L3). !

◊  Try to match rule 1 append(L1_2, [a], [2,3,a])  
 L1_2 = [] [a] = L_3 [2,3,a] = L_3!

◊  2 – Fail, try to match rule 2  
 L1_2 = [X_4 | L1_4] [a] = L2_4 [2,3,a] = [X_4 | L3_4]!
» Succeed with X_4 = 2 L2_4 = [a] L3_4 = [3,a]!

◊  Try to match rule 1 append(L1_4, [a], [3,a])  
 L1_4 = [] [a] = L_5 [3,a] = L_5!

UT-11	
© Gunnar Gotshalks!

Trace – append (P, [a] , [1 , 2 , 3 , a]) – 3!

   append ([] , L , L).  
append ([X | L1] , L2 , [X | L3]) 
 :- append (L1 , L2 , L3).!

◊  3 – Fail, try to match rule 2  
 L1_4 = [X_6 | L1_6] [a] = L2_6 [3,a] = [X_6 | L3_6]!
» Succeed with X_6 = 3 L2_6 = [a] L3_6 = [a]!

◊  Try to match rule 1 append(L1_6, [a], [a])  
 L1_6 = [] [a] = L_7 [a] = L_7!

◊  Succeed, recursion stops, backtrack and substitute values!

UT-12	
© Gunnar Gotshalks!

Trace – append (P, [a] , [1 , 2 , 3 , a]) – 4!

◊  In step 3  
 L1 _4 = [3 | []] = [3]!

◊  In step 2 we had  
 L1_2 = [X_4 | L1_4] L2_4 = [a] [2,3,a] = [X_4 | L3_4]!
» Succeed with X_4 = 2 L2_4 = [a] L3_4 = [3,a]!
» and from Step 3 L1_4 = [3]!
» Thus L1_2 = [2, 3]!

◊  In step 1 we had  
 P = [X_2 | L1_2] [a] = L2_2 [a,1,2,3] = [X_2 | L3_2]!
» Succeed with X_2 = 1 L2_2 = [a] L3_2 = [2,3,a]!
» and from Step 2 L1_2 = [2, 3]!
» Thus P = [1, 2, 3]!

UT-13	
© Gunnar Gotshalks!

delete (X , L , R)!

◊  R is the result of deleting item X from the list L.!
Remove if first in the list.!

   delete (X , [X | R] , R). 
!

If not the first then remove from the next 
smaller sublist.!

   delete (X , [Y | L] , [Y | R]) :- delete (X , L , R)!

The SWI Prolog built-in predicate delete does not!
work as the above definition. Arguments are in a  
different order and have different meaning.!

UT-14	
© Gunnar Gotshalks!

prefix (P , L)!

◊  P is a prefix of the list L. It can be defined using append
as follows.!

   prefix (P , L) :- append (P , _ , L).!

> P is a prefix of L if something, including nil, can
be suffixed to P to form L.!

UT-15	
© Gunnar Gotshalks!

prefix (P , L) – 2!

◊  We can define prefix in terms of itself as follows. !

   List PPPPPPXXXXX ==> XXXXX!
   Prefix YYYYYY - Empty!
   ^^^^^^ Check equality until Prefix is

exhausted.!

◊  The base case is having the empty list as the prefix.!
   prefix ([] , _).!

◊  The recursive case is having the first items on the prefix
and the list being the same and the reduced prefix and list
satisfy the prefix property.!
   prefix ([A | B] , [A | C]) :- prefix (B , C).!

UT-16	
© Gunnar Gotshalks!

suffix (S , L)!

◊  S is a suffix of the list L. It can be defined using append
as follows.!

   suffix (S , L) :- append (_ , S , L).!

> S is a suffix of L if something, including nil, can
be prefixed to S to form L.!

UT-17	
© Gunnar Gotshalks!

suffix (S , L) – 2!

◊  We can define suffix in terms of itself as follows. !

   List PPPPPPXXXXX ==> XXXXX!
   Suffix YYYYY YYYYY!
   ^^^^^^ Reduce the prefix part of the List.!

◊  In the base case the suffix is the list.!
   suffix (L , L).!

◊  The recursive case is to reduce the size of the prefix of the
list.!
   suffix (S , [_ | L]) :- suffix (S , L).!

UT-18	
© Gunnar Gotshalks!

sublist (S , L)!

◊  S is a sublist of L can be defined using append as follows. !

   sublist (S , L) :- append (_ , S , Lt) , 
 append (Lt , _ , L).!

> S is a sublist of L if something, including nil,
can be prefixed to S to form the list Lt!

> And something, including nil, can be suffixed to
Lt to form L.!

◊  In other words, S is a sublist of L if there exists a prefix P
to S and a suffix T to S such that L = P || S || T!

> where || means concatenate.!

UT-19	
© Gunnar Gotshalks!

sublist(S,L)!

◊  We can define sublist in terms of itself and prefix as
follows. !

   List PPPPSSSSSXXXXXX ==> SSSSSXXXXXX!
   Sublist YYYYY YYYYY!
   ^^^^ Reduce the prefix part of the List.!

◊  In the base case the sublist is the prefix of the list.!
   sublist (S , L) :- prefix (S , L).!

◊  The recursive case is to reduce the size of the prefix of the
list.!
   sublist (S , [_ | L]) :- sublist (S , L).!

UT-20	
© Gunnar Gotshalks!

removeAllTop (Item, List, Result)!

◊  Asserts that Result is List with all occurrences of Item
removed from the top level of List . 
!
   removeAllTop (_, [], []).!
    

removeAllTop (Item, [Item | Lt], R) :- 
! !removeAllTop (Item, Lt, R).!

    
removeAllTop (Item, [H | Lt], [H | Rt]) :- 
! !Item \= H , 
! !removeAllTop (Item, Lt, Rt).!

UT-21	
© Gunnar Gotshalks!

removeAll (Item, List, Result)!

◊  Asserts that Result is List with all occurrences of Item
removed from all levels of List .!
   removeAll (_, [], []).!
   removeAll (Item, [Item | Lt], R) :- 
! !removeAll (Item, Lt, R).!

   removeAll (Item, [H | Lt], [H | Rt]) :- 
! !Item \= H , H \= [_|_] , 

 ! !removeAll (Item, Lt, Rt).!
   removeAll (Item, [Lh | Lt], [Rh | Rt]) :- 
! !Item \= Lh , Lh = [_|_] , 

 ! !removeAll (Item, Lh, Rh) 
! !removeAll (Item, Lt, Rt).!
!!

