
PI-1	

© Gunnar Gotshalks!

Prolog Introduction!

PI-2	

© Gunnar Gotshalks!

What is a Prolog Program?!

◊  A program consists of a database containing one or more
facts!

> A fact is a relationship between a collection of
objects!

» dog (fido).!
> Fido is a dog 

 – it is true that Fido is a dog!
» mother (mary , joe).!

> Mary is the mother of Joe  
 – it is true that Mary is the mother of Joe!

» compete (ali , leila , tennis).!
> Ali and Leila compete in tennis  

 – it is true that Ali and Leila compete in tennis!

PI-3	

© Gunnar Gotshalks!

What is a Prolog Program? – 2!

◊  Relationships can have any number of objects!

◊  Names are usually chosen to be meaningful!
» Within Prolog, names are just arbitrary strings. It

is people who give meaning to names.!

PI-4	

© Gunnar Gotshalks!

What is a Prolog Program? – 3!

◊  And a program consists of a database of zero or more rules!
> A rule is an if...then relationship of facts!

» use (umbrella) :- weather (raining).!
> use an umbrella if weather is raining!

» use (umbrella) :- weather (raining) , own (umbrella).!
> use an umbrella if weather is raining and you own an

umbrella!
» use (umbrella) :- weather (raining) , 

 (own (umbrella) ; borrow (umbrella)).!
> use an umbrella if weather is raining and you either

own an umbrella or can borrow an umbrella!

PI-5	

© Gunnar Gotshalks!

More on rules!

◊  Rules have the general structure!
   head :- body!

» Only one fact can be in the head – the consequent!
» The body is a boolean combination of predicates!
» Use , (and) and ; (or) and () (parenthesis) to

logically organize the "condition" – the antecedent!

◊  Rules are written backwards to!
» emphasize the backward chaining for database

search!
» be more regular in structure, since the head is only

one predicate!

PI-6	

© Gunnar Gotshalks!

Constants!

◊  Constants are names that begin with lower case letters!
» ali, leila, tennis, dog, fido, mother, mary, joe,

umbrella, raining, weather, own, borrow!
» names of relationships are constants!

PI-7	

© Gunnar Gotshalks!

Variables!

◊  In place of constants in facts and rules one can have
variables!
» variables are names that begin with upper case

letters!
> X, Y, Who, Whom, List, Person!
   loves (Everyone , barney).!
> Everyone loves barney  

– for all values of Everyone it is the case that
loves(Everyone, barney) is true.!

   noisy (Singer) :- valkyrie (Singer) ; 
 tenor (Singer).!

> A Singer is noisy if they are a Valkyrie or a tenor!

PI-8	

© Gunnar Gotshalks!

Variables – 2!

   dwarf (Person) :- brother (Person, Other) , 
 dwarf (Other).!

> A person is a dwarf, if they the brother of other
and the other is a dwarf!

» Variables can also begin with _ (underscore)!
   _ (anonymous variable) 

_1 _abc (not anonymous variable)!

PI-9	

© Gunnar Gotshalks!

Running a Prolog Program!

◊  Programs are stored in one or more files that are consulted!

◊  On Prism to run SWI Prolog enter!
   % swipl!

◊  The following prompt appears!
   ?-!

◊  Consult the appropriate file(s) – add to the database!
   ?- consult ('ring.plʼ).!

> SWI-prolog does not have a reconsult predicate,
only consult is used!

> The following is an abbreviation!
   ?- [ring , tower , 'utilities.pl'].!

PI-10	

© Gunnar Gotshalks!

Running a Prolog Program – 2!

◊  Make zero or more queries (next slides)!

◊  Exit prolog!
   ?- CTRL-d /* and for consult (user) */!

   consult (user) enables you to enter facts & rules into
the database without storing them in a file. It is not an
effective way to work with Prolog, as it is error prone!

PI-11	

© Gunnar Gotshalks!

Queries!

◊  A query in Prolog is boolean combination of predicates –
like the antecedent of a rule!

> A query is like a rule, except we leave out the
consequent true!

   true :- dwarf (alberich).!
> becomes simply!

   dwarf (alberich).!

◊  Use comma (and), semicolon (or) and parenthesis to form
a query expression!

◊  Most common is to have a single predicate!

PI-12	

© Gunnar Gotshalks!

Queries – 2!

◊  Answer is a binding of the variables that make the
query expression true – if no variables then the answer
is yes. If no such binding exists, the answer is no!

◊  The database is searched to match the query.!

◊  The search!
» Uses backward chaining!
»  is depth first!
»  is sequential through the database from first to last!

◊  Try the exercise on ring.pl!

PI-13	

© Gunnar Gotshalks!

Structures!

◊  Structures are a means of grouping a collection of other
objects!
» Structures are also called compound terms, or

complex terms!
» The name of a structure is called a functor!
» The items within a structure are called components!

◊  The general pattern is!
   functor (component_1 , component_2 , 

 ... 
 component_n)!

PI-14	

© Gunnar Gotshalks!

Structures – 2!

◊  Components can also be structures – recursive definition!
   If component_1 = functor1 (comp1, comp2)!

> giving!
   functor (functor1 (comp1, comp2), 

 component_2 , 
 ... 
 component_n)!

>  from!
   functor (component_1 , component_2 , 

 ... 
 component_n)!

PI-15	

© Gunnar Gotshalks!

Example structures!

◊  Books have authors and titles, so we could have!
   book (dickens , great_expectations)!

◊  People have books. In particular, Leila could have Great
Expectations!
   has (leila , book (dickens , great_expectations))!

◊  Facts in Prolog are structures where the predicate is the
functor of a structure and the arguments of the predicate
are the components of the structure!

PI-16	

© Gunnar Gotshalks!

Characters!

◊  Prolog is based on the ASCII character set!

◊  Characters are treated as small integers 0 .. 127!

◊  Characters may be!
» printed!
»  read from a file or keyboard!
» compared!
»  take part in arithmetic operations!

◊  Characters are distinguished as !
» printing – visible on the paper!
» nonprinting – look like whitespace!

PI-17	

© Gunnar Gotshalks!

Operators!

◊  All operators in Prolog are functors, even , ; and :- !
>  A rule such as  
!

   dwarf (Person) :- brother (Person , Other) , 
 dwarf (Other) . 
!

>  is a shorthand for  
!

   :- (dwarf (Person)!
   , , (brother (Person , Other)!
   , dwarf (Other) !
  )!
  ).!

PI-18	

© Gunnar Gotshalks!

Operators – 2!

◊  Arithmetic and relational operators are also functors, thus!
   a + b * c internally is + (a , * (b , c))!

◊  This is inconvenient so Prolog permits operators to be
written in standard infix notation!
» You will learn later how you can define your own

infix operators!

PI-19	

© Gunnar Gotshalks!

Arithmetic!

◊  The arithmetic operators do not do arithmetic. No
assignments are made!

>  It is simply pattern matching – infix operators
are simply a convenience for expressing a
structure!

   5 = 4 + 1. ==> no  
4 + 1 = 4 + 1. ==> yes  
1 + 4 = 4 + 1. ==> no !

> Use the operator is to do arithmetic!
   5 is 4 + 1. ==> yes 1 + 4 is 4 + 1. ==> no !

◊  Arithmetic is only done on the right!!

◊  Right hand side is evaluated using arithmetic, then a
pattern match is made with the left hand side.!

PI-20	

© Gunnar Gotshalks!

Arithmetic – 2!

◊  Can use variables in arithmetic expressions for pattern
matching!
   A = 4 + 1. ==> A has the pattern "4+1"  

 – spaces removed!
   A is 4 + 1. ==> A has as value the pattern 5!

>  In some Prologs the latter expression simply
responds yes, so try the following.!

   A is 4 + 1 , A = 5. ==> A = 5 is the binding for true!
> More complex example!

   B is 3 + 2 , C is B * 5 , A is C + B  
 ! ! ! !==> B = 5, C = 25, A =30 !

PI-21	

© Gunnar Gotshalks!

Lists!

◊  Lists are a ubiquitous structure in many programming
languages. The syntax changes (to protect the
innocent?)!
» Actually () are used to delimit structure

components and to provide precedence for
operators, so using them for lists as well would be
confusing.!

◊  The structure is!
   [item-1 , item-2 , ... , item-n]!
   [a , b , c]!
   [a , [b , c] , [[[d]]] , e , []]!

◊  The empty list is []!

PI-22	

© Gunnar Gotshalks!

Lists - 2!

◊  The square bracket notation is a shorthand in place of
using the functor . , dot!
   [a , b , c] is really . (a , . (b , . (c , [])))!

◊  Lists have a head (first) and a tail (rest), thus!
   [Head | Tail]!

◊  But you do not have operators to extract the head and tail,
all you have is pattern matching!
» We will look at example Prolog utilities on lists to

demonstrate!

◊  Empty list has no head or tail!
   [] ≠ [_ | _]!

PI-23	

© Gunnar Gotshalks!

Equal pattern matching!

» Standard match!
> A = B !
> A \= B  
!

!
» Arithmetic values!

> A is expression!
>  expr1 =:= expr2 !equal values  

expr1 =\= expr2 !not equal values!

PI-24	

© Gunnar Gotshalks!

Strict pattern match!

» == !structures identical!
»  \== !structures not identical!

>  f(a, b) == f(a, b) –> yes!
>  f(a, b) == f(a, X) –> no!

PI-25	

© Gunnar Gotshalks!

SWIPL Help!

◊  You can get help with the following predicates. 
!
   help. !Brings up a help window from which you 

 ! !can search for information 
 
help(functor). 
! !Brings up a help window for the predicate  

 ! !with the name “functor” 
 
help(is). 
! !Brings up a help window for the predicate
! !named “is”. 
!

