
A4-1Gunnar Gotshalks

Design Patterns

The shift and focus (to patterns) will have a
profound effect on the way we write programs

 – Ward Cunningham & Ralph Johnson

A4-2Gunnar Gotshalks

On Design Patterns

• A design pattern systematically names, explains and
evaluates an important and recurring design problem and
its solution

• Good designers know not to solve every problem from first
principles

They reuse solutions

• This is very different from code reuse

• Software practitioners have not done a good job of
recording experience in software design for others to use

A4-3Gunnar Gotshalks

Design Patterns – Definition

“We propose design patterns as a new mechanism for
expressing object oriented design experience. Design
patterns identify, name and abstract common themes in
object oriented design. They capture the intent behind a
design by identifying objects, collaborations and
distribution of responsibilities.”

Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides ,“Design Patterns”, Addison-Wesley, 1995.
ISBN 0-201-63361-2

A4-4Gunnar Gotshalks

Others On Design Patterns

• Christopher Alexander
“Each person describes a problem which occurs over
and over and over again in our environment and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million times
over, without ever doing it the same way twice.”

A4-5Gunnar Gotshalks

Others On Design Patterns – 2

• Cunningham
“Patterns are the recurring solutions to the problem of
design. People learn patterns by seeing them and recall
them when need be without a lot of effort”

• Booch
“A pattern is a solution to a problem in a specific
context. A pattern codifies specific knowledge collected
from experience in a domain.”

A4-6Gunnar Gotshalks

Patterns & Frameworks

• Patterns support reuse of software architecture and
design

They capture static and dynamic structures of
successful solutions to problems. These problems
arise when building applications in a particular domain

• Frameworks support reuse of detailed design and
program source text

A framework is an integrated set of components that
collaborate to provide a reusable architecture for a
family of related applications

A4-7Gunnar Gotshalks

Patterns & Frameworks – 2

• Frameworks tend to be less abstract than patterns

• Together, design patterns and frameworks help to improve
key quality factors like reusability, extensibility and
modularity

A4-8Gunnar Gotshalks

Classification – Creational

• Creational
» Abstract the instantiation process

> Initializing and configuring classes and objects

» Make a system independent of how its objects are
created, composed and represented

• Class creational pattern uses inheritance to vary the class
that is instantiated

• Object creational pattern delegates instantiation to another
object

A4-9Gunnar Gotshalks

Creational Patterns

• Abstract Factory
» Provide an interface for creating families of related or

dependent objects without specifying their concrete
classes

• Builder
» Separate the construction of a complex object from its

representation so that the same construction process
can create different representations

• Factory Method
» Define an interface for creating an object but lets

subclasses decide the specific class to instantiate

A4-10Gunnar Gotshalks

Creational Patterns – 2

• Prototype
» Specify the kinds of objects to create using a

prototypical instance and create new objects by copying
the prototype

• Singleton
» Ensure a class has only one instance and provide a

global point of access

A4-11Gunnar Gotshalks

Classification – Structural

• Structural
» Deals with how classes and objects are composed to

form larger structures

» Decouple interface and implementation of classes and
objects

• Class structural patterns use inheritance to compose
interfaces or implementations

• Object structural patterns describe ways to compose
objects to realize new functionality

A4-12Gunnar Gotshalks

Structural Patterns

• Adapter
» Convert the interface of a class into a different interface

to let classes work together that otherwise could not

• Bridge
» Decouple an abstract from its implementation so that

the two can vary independently

A4-13Gunnar Gotshalks

Structural Patterns – 2

• Composite
» Compose objects into tree structures representing part-

whole hierarchies to deal uniformly with individual
objects and hierarchies of objects

• Decorator
» Attach additional responsibilities to an object

dynamically Provide a flexible alternative to sub-
classing for extending functionality

A4-14Gunnar Gotshalks

Structural Patterns – 3

• Façade
» Provide common interface to a set of interfaces within

system that defines a higher level interface to makes the
system easier to use common tasks

• Flyweight
» Use sharing to support large numbers of fine-grained

objects efficiently

• Proxy
» Provide a surrogate or placeholder for another object to

control access to it

A4-15Gunnar Gotshalks

Classification – Behavioural

• Concerned with algorithms and assignment of
responsibilities among objects
» Describe patterns of communication among objects

» Characterize complex run-time control flow

• Class behavioural patterns use inheritance to distribute
behaviour among classes

• Object behavioural patterns use object composition to
distribute behaviour

A4-16Gunnar Gotshalks

Behavioural Patterns

• Chain of Responsibility
» Avoid coupling the sender of a request to its receiver by

giving more than one object a chance to handle the
request by chaining the receiving objects and pass the
request along the chain until an object handles it

• Command
» Encapsulate a request as an object thereby

parameterizing clients with different requests, queue or
log requests, and support undoable operations

• Interpreter
» Given a language, define a representation for tis

grammar along with an interpreter that uses the
representation to interpret sentences in the language

A4-17Gunnar Gotshalks

Behavioural Patterns – 2

• Iterator
» Access elements of a container sequentially without

exposing the underlying representation

• Master-Slave
» Handles computation of replicated services in a system

to achieve fault tolerance and robustness

• Mediator
» Define an object that encapsulates how a set of objects

interact, promoting loose coupling by keeping objects
from explicitly referring to each other and let them vary
their interaction independently

A4-18Gunnar Gotshalks

Behavioural Patterns – 3

• Memento
» Without invalidating encapsulation, capture and

externalize an objectʼs internal state so that the object
can be restored to this state later

• Observer
» Define one-to-many dependency, when one subject

changes state, all observers (dependents) are notified
and updated

• State
» Alter behaviour of an object when its internal state

changes making the object appear to change its class

A4-19Gunnar Gotshalks

Behavioural Patterns – 4

• Strategy
» Define a family of algorithms, encapsulate each one, and

make them interchangeable to let the algorithm vary
independently from the clients that use it

• Template Method
» Define the skeleton of an algorithm in an operation,

deferring some steps to subclasses while the structure
of the algorithm does not change

• Visitor
» Represent an operation to be performed on all of the

components of an object structure by defining new
operations on a structure without changing the classes
representing the components

A4-20Gunnar Gotshalks

Acknowledgement

Descriptions of patterns
based on

Design Patterns
by

Erich Gamma, Richard Helm
Ralph Johnson, John Vlissides

Addison-Wesley, 1995.
ISBN 0-201-63361-2

A4-21Gunnar Gotshalks

Descriptive Template

• Name

• Intent
What does the pattern do? What problems does it
address?

• Motivation
A scenario of pattern applicability

• Examples
From real systems

• Abstract architecture
General representation of the pattern

• Scenario – Collaborations
How do the participants carry out their responsibilities?

A4-22Gunnar Gotshalks

Descriptive Template – 2

• Participants
Describe participating classes/objects

• Applicability
In which situations can this pattern be applied

• Consequences
How does the pattern support its objectives?

• Implementation
Pitfalls, language specific issues

• Related patterns
Pointers to patterns dealing with similar problems and
patterns used in conjunction with the current pattern

A4-23Gunnar Gotshalks

Becoming a Master Designer

• Learn the rules
» algorithms and data structures
» languages
» mathematics

• Learn the principles
» structured and modular programming
» theory of software engineering
» OO design and programming

• Study the designs of masters
» Design patterns must be understood, memorized and

applied
» Thousands of existing patterns

Are they all memorable?

A4-24Gunnar Gotshalks

Design Patterns Solve Design Problems

• Finding appropriate classes

• Determine class granularity
How abstract, how correct

• Specify interfaces

• Specify implementation

• Put reuse to work
Client vs inheritance

• Relate run time and compile time structures
Program text may not reflect design

A4-25Gunnar Gotshalks

Design Patterns Solve Design Problems – 2

• Design for change is difficult

• Common problems
» Explicit object creation

Use name of interface, not name of implementation

» Dependence of particular operations

Avoid hard coded operations

» Dependencies on hardware or software platforms

» Dependencies of object representation

» Dependencies on algorithms

» Tight coupling

A4-26Gunnar Gotshalks

Claims of the Pattern Community

• Well defined design principles have a positive impact on
software engineering
» Achievable reusability

» Provide common vocabulary for designers

Communicate, document, explore alternatives

» Patterns are like micro architectures

Useful for building small parts of a system

» Reduce the learning time for understanding class
libraries

» Avoid redesign stages by using encapsulated
experience

A4-27Gunnar Gotshalks

When to Use Patterns

• Solutions to problems that recur with variations
» No need for pattern if the problem occurs in only one

context
» Can we generalize the problem instance in which we are

interested?

• Solutions that require several steps
» Not all problems need all steps
» Patterns can be overkill if solution is a simple linear set

of interactions

• Solutions where the solver is more interested in “does
there exist a solution?” than in a solution’s complete
derivation

Patterns often leave out lots of detail

A4-28Gunnar Gotshalks

Key Principles

• Successful use of patterns and frameworks can be boiled
down to a few key principles
» Separate interface from implementation so each can

vary independently

» Determine what is common and what is variable with an
interface and an implementation

» Allow substitution of variable implementation via a
common interface. Use deferred classes and effect
them

• Don’t use blindly
Separating commonalties from variabilities should be
done on a goal by goal basis not exhaustively

It isn’t always worthwhile to apply them

A4-29Gunnar Gotshalks

Pattern Benefits

• Enable large scale reuse of software architectures

• Explicitly capture expert knowledge and design trade-offs

• Help improve developer communication

• Help ease the the transition to OO methods

• High level abstraction that leaves out the details

A4-30Gunnar Gotshalks

Pattern Drawbacks

• Patterns do not lead to direct code reuse

• Patterns are often deceptively simple

• You may suffer from pattern overload

• Patterns must be validated by experience and debate
rather than automated testing

• Integrating patterns into a process is human intensive
rather than a technical activity

