
A3-1© Gunnar Gotshalks

Finding Classes



A3-2© Gunnar Gotshalks

Background

• Looking for good and useful data abstractions
» Basis is good ADTs

• As in all design work, need creativity and experience

• We'll look at some
» good ideas
» precedents
» reuse
» some known pitfalls

• Need to read other designs



A3-3© Gunnar Gotshalks

Nouns & Verbs

• Some approaches suggest
» "Take your requirements document, and underline

all the nouns and all the verbs.  Your nouns will
correspond to classes, and your verbs will
correspond to methods of classes"

• Example
» "A database record must be created every time the

elevator moves, from one floor to another"
» Suggests

> Classes: DATABASE_RECORD, ELEVATOR,
FLOOR

> Methods: create, move



A3-4© Gunnar Gotshalks

Nouns & Verbs – 2

• On the other hand the phrase may have been
» "A database record must be created for every

move of the elevator from one floor to another

• Now move is noun and suggest it should be a class

• One major problem is
» All nouns can be verbed and many verbs can be

nouns

• Selecting classes cannot rely on the style or word
choice of a requirements document



A3-5© Gunnar Gotshalks

Raw Data

• Creating a comprehensive list of
» nouns – potential entity and entity types
»  verbs – potential events

• Is at best a means to get started

• Also need a comprehensive
» lists of questions and potential questions the

model is going to answer
> M is a model of a system S, if M can be used to

answer questions about S with accuracy A

• Point is to be all inclusive
» It is easier to throw away later, then add later



A3-6© Gunnar Gotshalks

Process the Raw Data

• Organize into potential ADT's
» Associate verbs with nouns
» Verbs correspond to events in the real world

> Messages that cross the system boundary
» Reject those that do not fit within the model

boundary
» Reject those that are not related to the questions

and answers associated with the model
» Reject those that are subsumed by other ADTs
» Be prepared to change names, look for

abstractions, generalities



A3-7© Gunnar Gotshalks

Example

• Had the following earlier
> Classes: DATABASE_RECORD, ELEVATOR,

FLOOR
> Methods: create, move

• Consider FLOOR
» What actions can it engage in?
» What methods might be applicable?

> Can't find any, then this is rejected as a class
» Maybe floor is an attribute of elevator

> An elevator can be at a floor
> When an elevator moves it changes floors



A3-8© Gunnar Gotshalks

Potentially Bad Choices of Classes

• A class that performs something, that has an
imperative name – PARSE, PRINT, etc.
» Parses the input

> On the other hand we saw sort algorithms be
objects

> Perhaps a parser is an object that we want to
pass around

• It is never clear cut
» But a useful heuristic is to reject such classes until

a need for them arises in later development

• Change the viewpoint
» Parse methods are operations on the object INPUT



A3-9© Gunnar Gotshalks

Bad Choices of Classes – 2

• A class that has a single routine that is exported
» Perhaps the method should be in another class

• A class that exists purely for classification
» Early class selection should not worry about

inheritance structure
» First define the ADT's of interest
» Then look for abstractions, generalizations,

taxonomy
> Danger is early taxonomy may bias ADT's in

directions that do not correspond to the model



A3-10© Gunnar Gotshalks

Bad Choices of Classes – 3

• A class with no methods
» Only a record structure
» Rarely is such a class useful

> Exceptions - global constants

• A class that refers to multiple abstractions
» A class should be an expert on one thing and one

thing only
> Merging properties of STRING and

EDITABLE_LINE
» Class becomes too large and cumbersome



A3-11© Gunnar Gotshalks

The Ideal Class

• There is a clearly associated data abstraction (ADT)

• The class name is a noun or an adjective that
characterizes the abstraction

• The class represents a collection of possible objects

• Several functions are available

• Several procedures are available

• Abstract properties can be stated formally
» class invariants
» requires and ensures clauses

• These are goals, not all properties necessarily hold



A3-12© Gunnar Gotshalks

General Heuristics for Finding Classes

• Class categories
» Analysis classes

> from real world (as opposed to the model world)
– plane, paragraph, course

» Design classes
> Architectural choices belonging to solution

space
– Command, State inheritance case study

» Implementation classes
> Data abstractions for internal needs of software

– Linked list, array



A3-13© Gunnar Gotshalks

Analysis & Implementation Classes

• Analysis classes
» Based on the abstract concepts of the problem

domain
> CAR, SENIORITY_RULE, MARKET_TENDENCY

» Characterized through visible features
> Chosen because of lasting value

• Implementation classes
» Used to make the system run on a computer

> Heavy on reuse
> Don't reinvent the wheel



A3-14© Gunnar Gotshalks

Design Classes

• Represent the abstractions that help produce
extendible software structures

> STATE, COMMAND, APPLICATION
» Design classes have been devised by others

– reuse is possible
> Read books, articles that describe designs

» Design patterns capture proven design techniques
> See some later

» Describe abstractions that can be better
understood as computational machines rather than
objects



A3-15© Gunnar Gotshalks

Other Class Sources

• Previous developments
» May need to rework existing classes

• Adaptation through Inheritance
» This may provide sufficient adaptability

• Criticism & rework
» Study the data flow and modularization of your

class structure
» Information needs to be known in too many places

indicates missing abstractions



A3-16© Gunnar Gotshalks

Other Class Sources – 2

• Hints from other approaches
» Non OO systems are frequently good designs and

may give ideas for classes in an OO approach
» Non OO methods give suggestions for finding

abstractions
> Entity-Event approach from JSD
> JSP input and output structures, structure

clashes and communicating sequential
processes – repack problem

> Structured Design – Constantine, et. al.
» Experienced developers are a source of

suggestions



A3-17© Gunnar Gotshalks

Other Class Sources – 3

• Files
» System's file structure suggests objects and their

class abstractions
> ADT's for a system's input and output

• Uses cases
» Study scenarios of how a system is being used
» Problem is bias towards specific sequential

processing too early in the design
» Do not provide abstractions that make a wider

range of scenarios possible
» Useful for validating a system



A3-18© Gunnar Gotshalks

Other Class Sources – 4

• Reuse
» The best one of all
» Look at what is available
» Adapt to needs



A3-19© Gunnar Gotshalks

Process for Finding Classes

• Do not be afraid to get it wrong at first

• Do not worry about a "main" program or a "user
interface" first
» That's top down

Propose Classes

then

Investigate and Reject Classes


