Singleton Pattern - Creational

e [ntent
» Ensure a class has only one instance

» Provide a global point of access

e Motivation
Some classes must only have one instance
file system, window manager
e Applicability
» Must have only one instance of a class

» Must be accessible from a known location

© Gunnar Gotshalks

Singleton-1



One Singleton — Abstract Architecture

Eiffel has once function but not static variables
More complex architecture
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Scenario
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Scenario: Get & use instance

Create instance_accessor

2 Create the_instance
-- only once, thereafter return it

Get the _instance

Use instance
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Memory Diagram
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Participants

e Singleton

Used to type a class as a singleton

e Single instance class

The class that should have only one instance

e Singleton accessor

Declares access point for a single instance

e |nstance accessor

Access point for the single instance

e (Client

Uses instance accessor to get the single instance
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One Singleton Class

class SINGLETON

feature {NONE}
frozen the_singleton : SINGLETON
-- The unique instance of this class

once
Result := Current
end
invariant Enforces single instance property

only_one_instance: Current =the_singleton

end
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Singleton Accessor Class

deferred class SINGLETON ACCESSOR
feature {NONE}

singleton : SINGLETON
-- Access to unique instance.
-- Must be redefined as once function.

deferred end

is_real_singleton : BOOLEAN
do
Result := singleton = singleton
end

invariant Enforces single instance property

singleton_is_real_singleton: is_real_singleton
end
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Instance Accessor Class

class INSTANCE ACCESSOR

inherit SINGLETON_ACCESSOR
rename singleton as the_instance end

feature
the_instance: SINGLE_INSTANCE_CLASS
-- Create the only instance in the system
once
create Result.make(...)
end

end
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One Singleton Single_Instance Class

class SINGLE_INSTANCE

inherit SINGLETON

end

Only need to inherit from SINGLETON class.
No other changes
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One Singleton — Consequences

e Sole instance is extensible by sub-classing

Clients use extended instance without modification
dynamically

e Reduce name space

Avoids adding global variables storing single instance
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One Singleton — Problem

As defined only one SINGLETON is permitted in the system.
The once feature in SINGLETON is common to all instances

The solution is to have a once feature for each
needed singleton

The invariant remains in the SINGLETON class
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Multiple Singletons

e SINGLETON class — as for solution 1
» Make the Singleton class deferred
» Make the_singleton deferred

» Keep the invariant

SINGLE INSTANCE class
» Inherit from SINGLETON

» Make the_singleton effective
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Multiple Solution — Abstract Architecture

@ T Invariant

singleton

*
+
SINGLE_INSTANCE_CLASS SINGLETON_ACCESSOR

instance

the_instance One per single
Instance class
+
the instance INSTANCE_ACCESSOR
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Multiple Singleton Class

deferred class SINGLETON

feature {NONE}
the_singleton : SINGLETON

-- The unique instance of this class
-- Should be redefined as a once function
-- returning Current in concrete subclasses

deferred end

invariant Enforces single instance property
only_one_instance: Current = the_singleton

end
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Multiple Singleton Single_Instance Class

class SINGLE_INSTANCE

_ _ Add to the single instance class
inherit SINGLETON - Inherit from SINGLETON class.

- Make the_singleton effective
feature {NONE}

frozen the_singleton : SINGLETON
-- The unique instance of this class
once
Result := Current
end

end
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Tradeoffs

e One singleton technique
» Only need to inherit from SINGLETON

» Compiler catches invalid create attempts

e Multiple singleton technique

» In addition to inheriting from SINGLETON, need to add
the feature the_singleton

» Invalid create attempts can only be caught at run time
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Related Patterns

e Abstract Factory, Builder and Prototype can use Singleton
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Singleton Java class AcctNumber

e Singleton is easy due to having static variables

public class AcctNumber {
private AcctNumber () { /* Only AcctNumber can construct */ }

private static AcctNumber instance = null;

Give client access to the single instance
S
public static AcctNumber getinstance() {

if (instance == null ) { instance = new AcctNumber(); }
return instance; }

/* See next slide for Singleton data and data access */
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Singleton Java class AcctNumber — 2

// The singleton data is not directly accessible
private int lastAcctNumber = 0;

// Give clients appropriate access to the data
public int getNumber { return lastAcctNumber; }

public void nextAcctNumber { lastAcctNumber++; }
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Singleton Java class AcctNumber — 3

e (Client side

// Customer 1 wants a couple of account numbers

AcctNumber customer_1 = AcctNumber.getinstance();
customer_1 . nextAcctNumber();
acct_number = customer_1 . getNumber(); ... use acct_number

customer_1 . nextAcctNumber();
acct_number = customer_1 . getNumber(); ... use acct_number

// Customer 2 wants an account number
AcctNumber customer_2 = AcctNumber.getinstance();

customer_2 . nextAcctNumber();
acct_number = customer_2 . getNumber(); ... use acct_number
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