Singleton Pattern - Creational

e [ntent
» Ensure a class has only one instance

» Provide a global point of access

e Motivation
Some classes must only have one instance
file system, window manager
e Applicability
» Must have only one instance of a class

» Must be accessible from a known location

© Gunnar Gotshalks

Singleton-1



One Singleton — Abstract Architecture

Eiffel has once function but not static variables
More complex architecture

singleton

*
=<~ SINGLETON ACCESSOR

N —

+

SINGLE_INSTANCE_CLASS
the_instance

-+
INSTANCE_ACCESSOR

© Gunnar Gotshalks Singleton-2

instance




Scenario

1
CLIENT L _____________ » INSTANCE_ACCESSOR

3 P
4 v
--------------- > SINGLE_INSTANCE_CLASS

Scenario: Get & use instance

Create instance_accessor

2 Create the_instance
-- only once, thereafter return it

Get the _instance

Use instance

© Gunnar Gotshalks Singleton-3



Memory Diagram

1 .
_ 3 _| Accessorobj

N
(Accessor class

1,2,3 correspond to messages
or are the result of messages
in the scenario

2 — P Singleton obj

L the_instance
J I
To referenced data

v

1 —» .
_ 3 _J Accessor obj

© Gunnar Gotshalks Singleton-4



Participants

e Singleton

Used to type a class as a singleton

e Single instance class

The class that should have only one instance

e Singleton accessor

Declares access point for a single instance

e |nstance accessor

Access point for the single instance

e (Client

Uses instance accessor to get the single instance

© Gunnar Gotshalks Singleton-5



One Singleton Class

class SINGLETON

feature {NONE}
frozen the_singleton : SINGLETON
-- The unique instance of this class

once
Result := Current
end
invariant Enforces single instance property

only_one_instance: Current =the_singleton

end

© Gunnar Gotshalks Singleton-6



Singleton Accessor Class

deferred class SINGLETON ACCESSOR
feature {NONE}

singleton : SINGLETON
-- Access to unique instance.
-- Must be redefined as once function.

deferred end

is_real_singleton : BOOLEAN
do
Result := singleton = singleton
end

invariant Enforces single instance property

singleton_is_real_singleton: is_real_singleton
end

© Gunnar Gotshalks

Singleton-7



Instance Accessor Class

class INSTANCE ACCESSOR

inherit SINGLETON_ACCESSOR
rename singleton as the_instance end

feature
the_instance: SINGLE_INSTANCE_CLASS
-- Create the only instance in the system
once
create Result.make(...)
end

end

© Gunnar Gotshalks Singleton-8



One Singleton Single_Instance Class

class SINGLE_INSTANCE

inherit SINGLETON

end

Only need to inherit from SINGLETON class.
No other changes

© Gunnar Gotshalks Singleton-9



One Singleton — Consequences

e Sole instance is extensible by sub-classing

Clients use extended instance without modification
dynamically

e Reduce name space

Avoids adding global variables storing single instance

© Gunnar Gotshalks Singleton-10



One Singleton — Problem

As defined only one SINGLETON is permitted in the system.
The once feature in SINGLETON is common to all instances

The solution is to have a once feature for each
needed singleton

The invariant remains in the SINGLETON class

© Gunnar Gotshalks Singleton-11



Multiple Singletons

e SINGLETON class — as for solution 1
» Make the Singleton class deferred
» Make the_singleton deferred

» Keep the invariant

SINGLE INSTANCE class
» Inherit from SINGLETON

» Make the_singleton effective

© Gunnar Gotshalks Singleton-12



Multiple Solution — Abstract Architecture

@ T Invariant

singleton

*
+
SINGLE_INSTANCE_CLASS SINGLETON_ACCESSOR

instance

the_instance One per single
Instance class
+
the instance INSTANCE_ACCESSOR

© Gunnar Gotshalks Singleton-13




Multiple Singleton Class

deferred class SINGLETON

feature {NONE}
the_singleton : SINGLETON

-- The unique instance of this class
-- Should be redefined as a once function
-- returning Current in concrete subclasses

deferred end

invariant Enforces single instance property
only_one_instance: Current = the_singleton

end

© Gunnar Gotshalks Singleton-14



Multiple Singleton Single_Instance Class

class SINGLE_INSTANCE

_ _ Add to the single instance class
inherit SINGLETON - Inherit from SINGLETON class.

- Make the_singleton effective
feature {NONE}

frozen the_singleton : SINGLETON
-- The unique instance of this class
once
Result := Current
end

end

© Gunnar Gotshalks Singleton-15



Tradeoffs

e One singleton technique
» Only need to inherit from SINGLETON

» Compiler catches invalid create attempts

e Multiple singleton technique

» In addition to inheriting from SINGLETON, need to add
the feature the_singleton

» Invalid create attempts can only be caught at run time

© Gunnar Gotshalks Singleton-16



Related Patterns

e Abstract Factory, Builder and Prototype can use Singleton

© Gunnar Gotshalks

Singleton-17



Singleton Java class AcctNumber

e Singleton is easy due to having static variables

public class AcctNumber {
private AcctNumber () { /* Only AcctNumber can construct */ }

private static AcctNumber instance = null;

Give client access to the single instance
S
public static AcctNumber getinstance() {

if (instance == null ) { instance = new AcctNumber(); }
return instance; }

/* See next slide for Singleton data and data access */

© Gunnar Gotshalks

Singleton-18



Singleton Java class AcctNumber — 2

// The singleton data is not directly accessible
private int lastAcctNumber = 0;

// Give clients appropriate access to the data
public int getNumber { return lastAcctNumber; }

public void nextAcctNumber { lastAcctNumber++; }

© Gunnar Gotshalks

Singleton-19



Singleton Java class AcctNumber — 3

e (Client side

// Customer 1 wants a couple of account numbers

AcctNumber customer_1 = AcctNumber.getinstance();
customer_1 . nextAcctNumber();
acct_number = customer_1 . getNumber(); ... use acct_number

customer_1 . nextAcctNumber();
acct_number = customer_1 . getNumber(); ... use acct_number

// Customer 2 wants an account number
AcctNumber customer_2 = AcctNumber.getinstance();

customer_2 . nextAcctNumber();
acct_number = customer_2 . getNumber(); ... use acct_number

© Gunnar Gotshalks Singleton-20



