
AbstractFactory-1© Gunnar Gotshalks

Abstract Factory Pattern – Creational

• Intent
Provide an interface for creating families of related
or dependent objects without specifying their
concrete classes

• The pattern is not abstract – just a poor choice of
name
» A better names would like one of the following

> Family factory
> Style factory
> Group factory

AbstractFactory-2© Gunnar Gotshalks

Example Families of Products

MOTIF WIDGET +
FACTORY

create_scrollbar +
create_window +
 …

PRESENTATION +
MANAGER
WIDGET FACTORY

create_scrollbar +
create_window +
 …

X_WIDGET +
FACTORY

create_scrollbar +
create_window +
 …

MAC OS X +
FACTORY

create_scrollbar +
create_window +
 …

WINDOWS XP +
FACTORY

create_scrollbar +
create_window +
 …

AbstractFactory-3© Gunnar Gotshalks

Motivation

• Building a user interface toolkit that supports multiple look and
feel standards

WINDOWS XP, MAC OS X, Motif,
Presentation Manager, X Window

• Have different appearances and behaviour for a large set of
subclasses

scroll bars, windows, buttons, ...

• Java API uses AF pattern in java.awt.Toolkit
» Button and Canvas classes are platform independent

> Use classes ButtonPeer and CanvasPeer that are
platform specific

AbstractFactory-4© Gunnar Gotshalks

Example Architecture

WIDGET_ *
FACTORY

create_scrollbar *
create_window *

MOTIF_WIDGET +
FACTORY

create_scrollbar +
create_window +

PM_WIDGET +
FACTORY

create_scrollbar +
create_window +

CLIENT

SCOLLBAR *

MOTIF_ +
SCOLLBAR

PM_ +
SCOLLBAR

WINDOW *

MOTIF_ +
WINDOW

PM_ +
WINDOW

factory
window

scrollbar

AbstractFactory-5© Gunnar Gotshalks

Abstract Architecture

ABSTRACT_ *
FACTORY

create_part_A *
create_part_B *

CONCRETE_1_ +
FACTORY

create_part_A +
create_part_B +

CONCRETE_2_ +
FACTORY

create_part_A +
create_part_B +

CLIENT

ABS_PART_B *

PART_ B_1 +
PART_ B_2 +

ABS_PART_A *

PART_ A_1 + PART_A_2 +

factory
part_a

part_b

AbstractFactory-6© Gunnar Gotshalks

Scenario

Scenario: Build a product

1 create client.make(a_Factory)
2 a_Factory.make_part_1(…)
3 part_1.make (…)
4 a_Factory. make _part_2 (…)
5 part_2.make (…)
 …

CLIENT

CONCRETE_FACTORY

2,4,… 3,5,…
USER

1

CONCRETE_PARTS

AbstractFactory-7© Gunnar Gotshalks

Participants

• Abstract factory
Declares interface for operations that create
abstract parts

• Concrete factory
Implements operations to create parts

• Abstract part
Declares an interface for a type of part

AbstractFactory-8© Gunnar Gotshalks

Participants – 2

• Concrete part
» Defines part to be created by the corresponding

concrete factory
» Implements Abstract_Part interface

• Client
Uses only the interfaces declared by
Abstract_Factory and Abstract_Part

AbstractFactory-9© Gunnar Gotshalks

Applicability

• System should be independent of how its products
are created, composed and represented

• System should be configured with one of multiple
families of products

• Family of related product objects is designed to be
used together and you need to enforce this constraint

• Provide a class library of products and you want to
reveal just their interfaces not their implementations

AbstractFactory-10© Gunnar Gotshalks

Collaborations

• A single instance of Concrete_Factory is created at
run time
» Creates parts having a particular implementation
» To create different parts, use a different concrete

factory

• Abstract_Factory defers creation of parts to its
Concrete_Factory subclass

AbstractFactory-11© Gunnar Gotshalks

Consequences

• Isolates concrete classes
» Factory encapsulates responsibility and process of

creating parts
» Isolates clients from implementation classes

• Exchanging product families easy
Concrete factory appears once where it is
instantiated

• Promotes consistency among products

• Supporting new kinds of products is difficult
Fixes set of parts to be created

AbstractFactory-12© Gunnar Gotshalks

Implementation

class MAZE_FACTORY feature
 make_maze : MAZE
 do create Result end

 make_room (id : INTEGER) : ROOM
 do create Result.make (id) end

 make_door (r1 : ROOM ; r2 : ROOM) : DOOR
 do create Result.make (r1, r2) end

 make_wall : MAZE
 do create Result.make end

end

AbstractFactory-13© Gunnar Gotshalks

Implementation – 2

-- Client program

class MAZE_MAKER create make_with
feature
 make_with (factory : MAZE_FACTORY)
 local maze : MAZE ; r1, r2 : ROOM ; door : DOOR
 do
 maze := factory.make_maze
 r1 := factory.make_room (1)
 r2 := factory.make_room(2)
 door := factory.make_door (r1, r2)
 maze.add_room (r1) ; maze.add_room (r2)
-- Construct contents of maze – next slide
 end
end

AbstractFactory-14© Gunnar Gotshalks

Implementation – 3

-- Construct contents of maze

r1.set_side (North , factory.make_wall)
r1.set_side (East , door)
r1.set_side (South , factory.make_ wall)
r1.set_side (West , factory.make_ wall)

r2.set_side (North , factory.make_ wall)
r2.set_side (East , factory.make_ wall)
r2.set_side (South , factory.make_ wall)
r2.set_side (West , door)

AbstractFactory-15© Gunnar Gotshalks

Implementation – 4

class ENCHANTED_MAZE_FACTORY inherits MAZE_FACTORY
feature
 make_room (id : INTEGER) : ROOM
 local room : ENCHANTED_ROOM
 do
 cast_a_spell(id)
 create room.make (id, spell) ; Result := room
 end

 make_door (r1 : ROOM ; r2 : ROOM) : DOOR
 local door : DOOR_NEEDING_SPELL
 do
 create door.make (r1, r2) ; Result := door
 end
end

AbstractFactory-16© Gunnar Gotshalks

Implementation – 5

-- Imagine a subclass of wall is damaged if a bomb goes off
-- Have a subclass of room with a bomb in it

class BOMBED_MAZE_FACTORY inherits MAZE_FACTORY
feature
 make_wall : WALL
 local wall : BOMBED_WALL
 do create wall.make ; Result := wall end

 make_room (id : INTEGER) : ROOM is
 local room : ROOM_WITH_BOMB
 do create room.make (id) ; Result := room end
end

AbstractFactory-17© Gunnar Gotshalks

Implementation – 6

-- Create various mazes

the_maze : MAZE_MAKER

factory_1 : ENCHANTED_MAZE_FACTORY -- Maze 1
create factory_1
create the_maze . make_from (factory_1)
the_maze.maze.describe

factory_2 : BOMBED_MAZE_FACTORY -- Maze 2
create factory_2
create the_maze . create_maze (factory_2)
the_maze.maze.describe

AbstractFactory-18© Gunnar Gotshalks

Related Patterns

• Abstract Factory classes can be implemented with
Factory Method or Prototype

• Concrete factories are often Singletons

AbstractFactory-19© Gunnar Gotshalks

Abstract Factory in Java API

• java.awt.Toolkit uses the Abstract Factory pattern
» Classes such as Button and Canvas are platform

independent
» Peer classes ButtonPeer and CanvasPeer contain

platform specific program text

