Observer Pattern — Behavioural

e |ntent

» Define one-to-many dependency

> When one subject changes state, all observers
(dependents) are notified and correspondingly
updated

e Also known as

» Dependents and Publish-Subscribe

© Gunnar Gotshalks Observer-1

Motivation

text view

S
Notify change Ais 30%
B is 50%

Cis 20%

target view bar view rectangle view

Observers
© Gunnar Gotshalks Observer-2

Example Architecture

[SUBJECT) i *
observers [...] OBSERVER
attach(observer) - update *
detach(observer) \ 7y z o
notify T
N y) .
T TARGET_VIEW *
subject
- N update *
TEXT VIEW | N P /
get_state = BAR_VIEW *
- subject
. set_state \ update *
subject

© Gunnar Gotshalks

[RECTANGLE VIEW *

update *

]
J

Observer-3

Abstract Architecture

© Gunnar Gotshalks

r “ ‘ P
SUBJECT observers [...] OBSERVER
attach(observor) - update *
detach(observer) N 'y g
n0tlfy ~—
N ~~J_
T ” o:observers * o.update
[CONCRETE_SUBJECT |
- . (CONCRETE_OBSERVER *
subject
get_state < .
set_state update
\ y, \ / o
\ /
\ /
. /
notify

subject.get state

Observer-4

Scenario

e Concrete subject updates all observers, when state is
changed by a client

CLIENT
_ L en 2

Scenario: Update observers 1 | |

1 set_state v v

2 notify CONCRETE_SUBJECT

3 update ' x

4 get_state 3 i 4

v

CONCRETE_OBSERVER -]

© Gunnar Gotshalks Observer-5

Participants

e Subject
» Knows its observers

» Provides interface for attaching, detaching and notifying
its observers

e (Observer

» Defines an updating interface for observers

© Gunnar Gotshalks Observer-6

Participants — 2

e Concrete subject
» Stores state of interest to concrete observers

» Notifies observers when state changes

e Concrete observer
» Maintains a reference to its concrete subject
» Stores state that corresponds to the state of the subject

» Implements Observer updating interface

© Gunnar Gotshalks Observer-7

Applicability

e When an abstraction has two aspects, one
dependent upon the other

» Encapsulating each aspect as a separate object

means you can change and use them
independently

 \WWhen changing one object requires changing an
indeterminate number of corresponding objects

 \WWhen an object needs to notify other objects without
making detailed assumptions about those objects, to
reduce coupling

© Gunnar Gotshalks Observer-8

Consequences

e Abstract coupling between subject and observer
» Permits changing number of observers dynamically

» Subject and observer can belong to different layers

> If they are in one class, then the object spans system
layers, which can compromise abstraction by
layering

e Supports broadcast communication

e Can have observers depend upon more than one subject

© Gunnar Gotshalks Observer-9

Consequences — 2

e Observers may also change the state

» Can be expensive as observers are unaware of each
other

 Need additional protocol to indicate what changed

» Can have spurious updates
> Not all observers participate in all changes

» Can have clients notify, instead of subject, as clients
understand better when updates are needed

> Leads to errors as clients can forget to update

© Gunnar Gotshalks Observer-10

Consequences — 3

e Dangling references when subject is deleted

» Notify observers when subject is deleted

> Cannot delete observers as other subjects may
depend upon them

e Update only when subject state is consistent with respect
to observer

» Could be violated when subclasses invoke inherited
operations

© Gunnar Gotshalks Observer-11

Related Patterns

e Mediator pattern is used for change managers

» Change manager mediates between subjects and
observers by encapsulating complex update methods

e Singleton pattern is can be used to make a change
manager unique and globally accessible

© Gunnar Gotshalks Observer-12

Observer in Java API

e The class Observer is a direct implementation of the

pattern as discussed in these slides

© Gunnar Gotshalks

Observer-13

