Observer Pattern — Behavioural

e |ntent

» Define one-to-many dependency

> When one subject changes state, all observers
(dependents) are notified and correspondingly
updated

e Also known as

» Dependents and Publish-Subscribe
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Motivation
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Example Architecture

[ SUBJECT ) i *
observers [...] OBSERVER
attach(observer) - update *
detach(observer) \ 7y z o
notify T
N y ) .
T TARGET_VIEW *
subject
- N update *
TEXT VIEW | N P /
get_state = BAR_VIEW *
- subject
. set_state \ update *
subject

© Gunnar Gotshalks

[ RECTANGLE VIEW *

update *

]
J

Observer-3



Abstract Architecture
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Scenario

e Concrete subject updates all observers, when state is
changed by a client
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Participants

e Subject
» Knows its observers

» Provides interface for attaching, detaching and notifying
its observers

e (Observer

» Defines an updating interface for observers
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Participants — 2

e Concrete subject
» Stores state of interest to concrete observers

» Notifies observers when state changes

e Concrete observer
» Maintains a reference to its concrete subject
» Stores state that corresponds to the state of the subject

» Implements Observer updating interface
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Applicability

e When an abstraction has two aspects, one
dependent upon the other

» Encapsulating each aspect as a separate object

means you can change and use them
independently

 \WWhen changing one object requires changing an
indeterminate number of corresponding objects

 \WWhen an object needs to notify other objects without
making detailed assumptions about those objects, to
reduce coupling
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Consequences

e Abstract coupling between subject and observer
» Permits changing number of observers dynamically

» Subject and observer can belong to different layers

> If they are in one class, then the object spans system
layers, which can compromise abstraction by
layering

e Supports broadcast communication

e Can have observers depend upon more than one subject
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Consequences — 2

e Observers may also change the state

» Can be expensive as observers are unaware of each
other

 Need additional protocol to indicate what changed

» Can have spurious updates
> Not all observers participate in all changes

» Can have clients notify, instead of subject, as clients
understand better when updates are needed

> Leads to errors as clients can forget to update
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Consequences — 3

e Dangling references when subject is deleted

» Notify observers when subject is deleted

> Cannot delete observers as other subjects may
depend upon them

e Update only when subject state is consistent with respect
to observer

» Could be violated when subclasses invoke inherited
operations
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Related Patterns

e Mediator pattern is used for change managers

» Change manager mediates between subjects and
observers by encapsulating complex update methods

e Singleton pattern is can be used to make a change
manager unique and globally accessible
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Observer in Java API

e The class Observer is a direct implementation of the

pattern as discussed in these slides
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