
Visitor-1!© Gunnar Gotshalks!

Visitor Pattern – Behavioural!

•  Intent!
» Represent an operation to be performed on all of

the components of an object structure  
!

» Define new operations on a structure without
changing the classes representing the components!

Visitor-2!© Gunnar Gotshalks!

Motivation!

•  Compiler using an abstract syntax tree!

NODE *!
type_check *!
generate_code *!
pretty_print *!

VAR_NODE +!

type_check +!
generate_code +!
pretty_print +!

ASSIGN_NODE +!

type_check +!
generate_code +!
pretty_print +!

....!

Operations spread!
out OO style but ...!
difficult to add a!
new operation!

Visitor-3!© Gunnar Gotshalks!

Motivation – 2!

•  Consider programs to process HTML tags!

HTML_TAG *!
tangle *!
weave *!
display *!

P_TAG +! LI_TAG +!

....!tangle +!
weave +!
display +!

Want to add literate!
programming processors!
– need to modify all classes!
recompile everything!
including deferred classes!

tangle +!
weave +!
display +!

Visitor-4!© Gunnar Gotshalks!

SGML Example Architecture!

*!VISITOR!

+!
LI_TAG!

*!SGML_TAG!

+!
PS_GENERATE!

Same structure!
for each tag!

One visitor subclass!
for each operation!

•  Tag classes are independent of every operation!

•  Nodes accept visitors and direct them to the appropriate
operation – through polymorphism!

Visitor-5!© Gunnar Gotshalks!

Abstract Architecture!

ELEMENT *!
accept (VISITOR) *!
...!

VISITOR *!
visit_elem_A (ELEM_A) *!
visit_elem_B (ELEM_B) *!
...!

CONCRETE_VISITOR_1 +!

visit_elem_A (ELEM_A) +!
visit_elem_B (ELEM_B) +!
...!

CONCRETE_VISITOR_2 +!

 ELEM_A +!

accept (VISITOR) +!
...!

ELEM_B +!

a_visitor an_element!

Visitor-6!© Gunnar Gotshalks!

Scenario!

•  Concrete visitor loops over the elements!
•  For each element concrete visitor!

!Selects which method in the visitor to execute !

CONCRETE_VISITOR! CONCRETE_ELEMENT!
1!

2!

1 accept (concrete_visitor)!
2 visit_routine (concrete_element)!

Scenario: Do one visit!

Visitor-7!© Gunnar Gotshalks!

Participants!

•  Element!
!Declares accept method for Visitors!

!

•  Concrete element!
!Implements accept method for Visitors!

!

•  Visitor!
!Declares visit operation for each concrete element
class!

Visitor-8!© Gunnar Gotshalks!

Participants – 2!

•  Concrete visitor!
»  Implements every visit operation declared by the

Visitor!
!Each visit operation implements a fragment of
the algorithm defined for the concrete visitor!

» Provides the context for the algorithm composed
of all of the visit fragments!
!State accumulates with each visit!

»  Implements the high level organization!
>  Iteration over the components!
> Processing each in turn!

Visitor-9!© Gunnar Gotshalks!

Applicability!

•  Object structure contains many classes of objects
with differing interfaces and want to perform
operations that depend on their concrete classes!

•  Many distinct and unrelated operations need to be
performed!
» Do not want to or are unable to clutter the concrete

classes with these operations!
» Keep the related sub-operations (specific to each

concrete class) together!
» Put operations into only those applications that

need them!

Visitor-10!© Gunnar Gotshalks!

Applicability – 2!

•  The classes defining the object structure rarely
change, but you often want to define new operations
over the structure!
!Changing object structure means!
!Redefining interface to all visitors, which is
costly!

Visitor-11!© Gunnar Gotshalks!

TAG Implementation!

deferred class HTML_TAG feature!
!

 accept (visitor : VISITOR) deferred end!
!

 ... -- other features ...!
!

end!

class LI_TAG inherit HTML_TAG feature!
!

 accept (visitor : VISITOR) do!
 visitor.visit_li_tag (Current)!
 end!
!

... -- other features ...!
!

end!

Visitor-12!© Gunnar Gotshalks!

VISITOR Implementation!

deferred class VISITOR feature!
!
 -- Have one "visit" routine for each tag (component) !
 !
 visit_LI_TAG (tag : LI_TAG) deferred end!
 visit_P_TAG (tag : P_TAG) deferred end!
 visit_UL_TAG (tag : UL_TAG) deferred end!
 ... !
end!

Visitor-13!© Gunnar Gotshalks!

Concrete Visitor Implementation!

class CONCRETE_VISITOR inherit VISITOR feature!
!

 get_elements -- Attaches elements to the iterator!
 while not elements.allDone do!
 elements.item.accept (Current)!
 elements.next!
 end!
!
 visit_li_tag (tag : LI_tag) do semantic action ... end!
 visit_ul_tag (tag : UL_tag) do semantic action ... end!
 visit_p_tag (tag : P_tag) do semantic action ... end!
 !
 ... -- and all the rest of the tags!
!
end!

Visitor-14!© Gunnar Gotshalks!

Consequences!

•  Adding new operations is easy!
» New operation implements visitor interface for the

components!
» All the fragments of the visitor algorithm are in one

file – related behaviours are together!
!Easier to make sure that components are
working in unison!

» Unrelated operations and fragments are in other
visitor classes!

» Contrast with having to change each of the
component classes to have the operation fragment!
!Each class has a fragment of each of the
operations!

Visitor-15!© Gunnar Gotshalks!

Consequences – 2!

•  Adding new concrete elements is difficult!
» Need to modify visitor class!
» Need to modify each concrete visitor!

> Can sometimes simplify as many elements have
common behaviour (default behaviour) that can
be specified at concrete visitor level 1.!

> Create subclasses of level 1 for more specific
behaviour for the new elements!
–  Only program the new elements	

» For many structures components do not change
rapidly so this is not a problem!

Visitor-16!© Gunnar Gotshalks!

Example Multi-Level Visitor!

*!
HTML–VISITOR!

+!
PARSER!

++!
PARSER_!
TANGLE!

++!
EMITTER_!
TANGLE!

+!
EMITTER!

++!
EMITTER_!

PS!

Default – echo input!
from internal ADT!

Build internal!
structure!

Extend for!
program references!

Output program!
text for compiler!

Output in!
Postscript!

Visitor-17!© Gunnar Gotshalks!

Consequences – 3!

•  Works across class hierarchies!
» Contrast with Iterator Pattern 
!

» Contrast with multi-panel & do-undo applications!

Visitor-18!© Gunnar Gotshalks!

Related Patterns!

•  Visitor pattern is used to apply an operation over a
Composite!

•  Visitor pattern is used to do the interpretation for an
Interpreter pattern!

•  Visitor pattern is used to process the items obtained
by using the Iteration pattern to iterate over a
collection.!

