
Facade-1© Gunnar Gotshalks

Facade Pattern – Structural

• Intent
» Provide common interface to a set of interfaces

within system

» Define a higher level interface that makes the
system easier to use for most common tasks

Facade-2© Gunnar Gotshalks

Motivation

• Design goal is to minimize communication between
client and subsystems of a system

• Facade provides a simplified interface to the more
general facilities of a system

Facade-3© Gunnar Gotshalks

Example Diagram

Clients

Subsystem
classes

Facade
No facade

Facade-4© Gunnar Gotshalks

Participants – Compiler Example

• Facade
» Compiler

> Knows which subsystem classes are
responsible for a request

> Delegates client requests to appropriate
subsystem objects

• Subsystems
» Scanner, Parser, Emitter, TypeNode(s), etc.

> Implement system functionality
> Handle work assigned by Facade object
> Have no knowledge of the facade

– Have no reference to it

Facade-5© Gunnar Gotshalks

Applicability

• Need to provide a simple interface to set of complex
subsystems

• Provide a simple default view
As systems grow, classes become smaller more
refined

> Better for reuse
> More difficult for clients to use

• Decouple subsystems from clients
Reduce implementation dependencies

Facade-6© Gunnar Gotshalks

Applicability – 2

• Layer subsystems
» Each layer has a single entry point
» Layers communicate only through Facade interface

Facade-7© Gunnar Gotshalks

Compiler Example – Pseudocode

class COMPILER
 feature { NONE }
 nodeTree : NODE
 scanner : SCANNER
 parser : PARSER
 emitter : EMITTER
 feature
 compile do
 nodeTREE ← parser.parse (scanner)
 emitter.output (nodeTree)
 end
 end
end

Individual
subsystems

Facade-8© Gunnar Gotshalks

Web Server Example

• A web page providing functionality uses the facade
pattern.
» Behind the web page is a complex collection of

objects and classes that provide the functionality

» Servlets are a common Java way of providing
server-side facade functionality

Facade-9© Gunnar Gotshalks

Collaborations

• Clients communicate with the subsystem by sending
requests to Facade

• Facade forwards requests to subsystem
» Facade may have to translate its interface to

subsystem interface (use Adapter)

• Clients that use facade don't have direct access to
the subsystems

FACADECLIENT

SUB-SYSTEM_1

SUB-SYSTEM_2

SUB-SYSTEM_3

Facade-10© Gunnar Gotshalks

Consequences

• Benefits
Shields clients from subsystem components

Reducing number of objects clients deal with
» Promotes weak coupling between subsystems and

clients
Can vary components of subsystem without
affecting clients

• Liability
» Doesn't prevent expert clients from direct access

to subsystems
Choice between ease of use and generality

Facade-11© Gunnar Gotshalks

Related Patterns

• Abstract Factory is used with Façade to provide an
interface of creating subsystems independent of the
sub-systems.

• Mediator abstracts arbitrary communication between
objects by centralizing functionality that does not
properly belong to either of them. Instead of direct
communication, objects go through the mediator

• Facade objects are often Singletons

Facade-12© Gunnar Gotshalks

Facade in Java API

• Enterprise Java Beans (EJBs) are server-side
components organized in a container
» Relieves the programmer of common burdens

> Managing threads
> Sessions with clients
> Common database operations

» Clients are not permitted access to an EJB class
» Pair of facade interfaces are provided

> One is used to create objects of MyEJBClass
> The other is used to access the functionality

MyEJBClass

