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Composite Pattern – Structural!

•  Intent!
»  Compose objects into tree structures representing part-

whole hierarchies 
!

»  Clients deal uniformly with individual objects and 
hierarchies of objects!
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Motivation!

•  Applications that have recursive groupings of primitives 
and groups!
»  Drawing programs!

!lines, text, figures and groups!
»  Eiffel static structure!

!classes and clusters  
!

•  Operations on groups are different than primitives but 
users treat them in the same way!

!
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Drawing Example!
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Example Architecture!
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Abstract Architecture!
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Participants!

•  Component!
!Defines properties of an entity!

•  Leaf!
!Defines properties of a primitive entity!

•  Composite!
!Declares properties of a collection of entities!

•  Composite Component!
!Combines properties of a collection of entities and 
properties of a primitive entity!

•  Client!
!Uses component and composite properties!
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Applicability!

•  Represent part-whole hierarchies of objects!

•  Clients can ignore difference between individual objects 
and compositions!

•  Clients deal with all objects in a composition in the same 
way!
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Consequences!

•  Whenever client expects a primitive it can accept a 
composite  
 !

•  Client is simplified by removing tag-case statements to 
identify parts of the composition  
 !

•  Easy to add new components by sub-classing, client does 
not change  
 !

•  If compositions are to have restricted sets of components 
have to rely on run-time checking!
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Related Patterns!

•  Component-parent link is a Chain of Responsibility 
  !

•  Decorator is used together with composite but then 
decorators have to support add, remove, iterator 
 !

•  Flyweight permits sharing components but cannot refer to 
parents 
 !

•  Iterator can be used to traverse composites 
 !

•  Visitor localizes operations that would be distributed 
across composite and leaf classes!
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Composite in Java API!

•  Composites are used in all container like classes!
» Windows!
»  Canvases!


