
Composite-1!© Gunnar Gotshalks!

Composite Pattern – Structural!

•  Intent!
»  Compose objects into tree structures representing part-

whole hierarchies 
!

»  Clients deal uniformly with individual objects and
hierarchies of objects!

Composite-2!© Gunnar Gotshalks!

Motivation!

•  Applications that have recursive groupings of primitives
and groups!
»  Drawing programs!

!lines, text, figures and groups!
»  Eiffel static structure!

!classes and clusters  
!

•  Operations on groups are different than primitives but
users treat them in the same way!

!

Composite-3!© Gunnar Gotshalks!

Drawing Example!

DIAGRAM!

DIAGRAM!TEXT! LINE!

DIAGRAM!

OVAL! TEXT!

DIAGRAM!

OVAL! TEXT!

Composite-4!© Gunnar Gotshalks!

Example Architecture!

LINE +!

draw +!
DIAGRAM +!

draw +!

GRAPHIC *!
draw *!

TEXT +!

draw +!

OVAL +!

draw +!

 +!
COMPOSITE[T]!

add +!
remove +!

graphic […]!

" g:graphic • g.draw!

diagram!

CLIENT!

Composite-5!© Gunnar Gotshalks!

Abstract Architecture!

+!
COMPOSITE_COMPONENT!

op_1 +!
op_2 +!

COMPONENT *!
op_1 *!
op_2 *!

CLIENT!

+!
LEAF!
op_1 +!
op_2 +!

 +!
COMPOSITE[T]!

add +!
remove +!

children […]!

" c:children • c.op_2!

composite!

Composite-6!© Gunnar Gotshalks!

Participants!

•  Component!
!Defines properties of an entity!

•  Leaf!
!Defines properties of a primitive entity!

•  Composite!
!Declares properties of a collection of entities!

•  Composite Component!
!Combines properties of a collection of entities and
properties of a primitive entity!

•  Client!
!Uses component and composite properties!

Composite-7!© Gunnar Gotshalks!

Applicability!

•  Represent part-whole hierarchies of objects!

•  Clients can ignore difference between individual objects
and compositions!

•  Clients deal with all objects in a composition in the same
way!

Composite-8!© Gunnar Gotshalks!

Consequences!

•  Whenever client expects a primitive it can accept a
composite  
 !

•  Client is simplified by removing tag-case statements to
identify parts of the composition  
 !

•  Easy to add new components by sub-classing, client does
not change  
 !

•  If compositions are to have restricted sets of components
have to rely on run-time checking!

Composite-9!© Gunnar Gotshalks!

Related Patterns!

•  Component-parent link is a Chain of Responsibility 
 !

•  Decorator is used together with composite but then
decorators have to support add, remove, iterator 
 !

•  Flyweight permits sharing components but cannot refer to
parents 
 !

•  Iterator can be used to traverse composites 
 !

•  Visitor localizes operations that would be distributed
across composite and leaf classes!

Composite-10!© Gunnar Gotshalks!

Composite in Java API!

•  Composites are used in all container like classes!
» Windows!
»  Canvases!

