
Adapter-1!© Gunnar Gotshalks!

Adapter Pattern – Structural!

•  Intent!
»  Convert the interface of a class into a different interface

that a client expects. 
!

»  Lets classes work together that otherwise could not!

Adapter-2!© Gunnar Gotshalks!

Class Adapter – Motivation!

•  EDITOR expects a SHAPE!

•  TEXT_VIEW is not a SHAPE!

•  TEXT_SHAPE is a SHAPE!
!Reuse TEXT_VIEW in the context of a SHAPE!

TEXT_VIEW!

SHAPE!

TEXT_SHAPE!FIGURE_SHAPE!

EDITOR!
shape[…]!

Adapter-3!© Gunnar Gotshalks!

Object Adapter – Motivation!

•  EDITOR expects a SHAPE!

•  TEXT_VIEW is not a SHAPE!

•  TEXT_SHAPE is a SHAPE!
!Reuse subclasses of TEXT_VIEW in the context of a
SHAPE!

SHAPE!

TEXT_SHAPE!FIGURE_SHAPE!

EDITOR!

TEXT_VIEW!

TEXT_A! TEXT_B!

shape[…]!

text!

Adapter-4!© Gunnar Gotshalks!

Applicability!

•  Use an existing class when its interface does not match
the one you need  
!

•  Create a class that cooperates with unrelated or
unforeseen classes with incompatible interfaces 
!

•  Object Adapter Only!
!Need to use several existing subclasses, but it is
impractical to adapt by sub-classing each one of them!
!Object adapter adapts the interface of the parent
class!

Adapter-5!© Gunnar Gotshalks!

Participants!

•  TARGET!
!Application interface  
!

•  Client!
!Target user  
!

•  Adaptee!
!Interface that needs
adapting 
!

•  Adapter 
 – alternative name wrapper!
!Provides functionality not
provided by the adaptee!

ADAPTER!

ADAPTEE!

TARGET!

CLIENT!

Either relationship (only 1 of
them for an ADAPTER)!
 is_a – class adapter!
 has_a – object adapter!

Adapter-6!© Gunnar Gotshalks!

Object Adapter – Scenario!

ADAPTER!

ADAPTEE!TARGET!

CLIENT!

adaptee : ADAPTEE!
method_in_target!

Scenario – collaboration 
!

1   Client does
target.method_in_target 
!

2   Adapter does
adaptee.method_in_adaptee
(note polymorphism)!

CLIENT!

TARGET!

ADAPTEE!

1!

2!

Adapter-7!© Gunnar Gotshalks!

Object Adapter– Pseudocode!

class ADAPTER!
 feature!
 adaptee : ADAPTEE!
 ...!
 method_in_target do!

! pre_actions!
 adaptee . method_in_adaptee!

! post_actions!
 end!
 end!
end! class ADAPTEE!

 feature!
 method_in_adaptee do ... end!
 end!
end!

Adapter-8!© Gunnar Gotshalks!

Object Adapter– Stack Implementation!

•  The Adapter pattern used where stack operations are
calls to "equivalent" sequence operations!
!Sequence container; !

•  Push – Uses the Sequence putHead!
   public void push(final Object obj) {  

 container.putHead(obj); }  
!

•  Pop – Uses the Sequence takeHead!
   public Object pop() {  

 return container.takeHead(); }!

Adapter-9!© Gunnar Gotshalks!

Consequences!

•  There are tradeoffs – a class adapter – inheritance!
»  adapts Adaptee to Target by committing to concrete

Adapter class!
!Class adapter is not useful when we want to adapt a
class and all its subclasses!

»  Lets Adapter override some of Adaptee's behaviour!
!Adapter is a subclass of Adaptee!

»  Introduces only one object!
!No additional pointer indirection is needed to get to
adaptee!

Adapter-10!© Gunnar Gotshalks!

Consequences – 2!

•  There are tradeoffs – an object adapter – uses!
»  One Adapter can work with many Adaptees!

>  Adaptee and all its subclasses!
>  Can add functionality to all Adaptees at once  
!

»  Makes it harder to override Adaptee behaviour!
!Requires making ADAPTER refer to the subclass
rather than the ADAPTEE itself!

Or!
!Subclassing ADAPTER for each ADAPTEE subclass!

Adapter-11!© Gunnar Gotshalks!

Related Patterns!

•  Bridge is similar to object Adapter but Bridge is meant to
separate interface from implementation so they can vary
independently, while Adapter extends the interface of an
existing object 
 
!

•  Decorator is more transparent than Adapter, so Decorator
supports recursive composition, while Adapter doesn't 
 
 !

•  Proxy defines a representative for another object and does
not change its interface!

Adapter-12!© Gunnar Gotshalks!

Adapter in Java API!

•  Java Listeners are adapters.!
» myMethod in myClass is to execute whenever myButton

is pressed 
!

»  Introduce MyListener that implements the
ActionListener class!

>  MyListener is an adapter as the program text in
myButton references ActionListener!

