
25-1!© Gunnar Gotshalks!

Case Study!
Command Do–Undo!

Interaction!

25-2!© Gunnar Gotshalks!

The Domain!

•  Interactive systems usually have an undo operation
to be able to back up one or more steps!

25-3!© Gunnar Gotshalks!

The Domain – 2!

•  Interactive systems usually have an undo operation
to be able to back up one or more steps!

•  To preserve symmetry need to have a corresponding
redo operation!

25-4!© Gunnar Gotshalks!

The Domain – 3!

•  Interactive systems usually have an undo operation
to be able to back up one or more steps!

•  To preserve symmetry need to have a corresponding
redo operation!

•  One keystroke gives undo another gives redo!

25-5!© Gunnar Gotshalks!

The Domain – 4!

•  Interactive systems usually have an undo operation
to be able to back up one or more steps!

•  To preserve symmetry need to have a corresponding
redo operation!

•  One keystroke gives undo another gives redo!

•  Not all actions are undo-able!

25-6!© Gunnar Gotshalks!

The Domain – 5!

•  Interactive systems usually have an undo operation
to be able to back up one or more steps!

•  To preserve symmetry need to have a corresponding
redo operation!

•  One keystroke gives undo another gives redo!

•  Not all actions are undo-able!
» Which ones? 

What are their properties?!

25-7!© Gunnar Gotshalks!

The Domain!

•  Interactive systems usually have an undo operation
to be able to back up one or more steps!

•  To preserve symmetry need to have a corresponding
redo operation!

•  One keystroke gives undo another gives redo!

•  Not all actions are undo-able!
» Which ones? 

What are their properties?!
> print, erase, fire missile!
> Have side effects outside of the model !

25-8!© Gunnar Gotshalks!

The Requirements!

•  Should be applicable to a wide class of interactive
applications!

25-9!© Gunnar Gotshalks!

The Requirements – 2!

•  Should be applicable to a wide class of interactive
applications!

•  Should not require redesign for each new command
that can be undone!
!

25-10!© Gunnar Gotshalks!

The Requirements – 3!

•  Should be applicable to a wide class of interactive
applications!

•  Should not require redesign for each new command
that can be undone!
»  Implies that undo and redo are different in nature

than the other commands!

25-11!© Gunnar Gotshalks!

The Requirements – 4!

•  Should be applicable to a wide class of interactive
applications!

•  Should not require redesign for each new command
that can be undone!
»  Implies that undo and redo are different in nature

than the other commands!

•  Make reasonable use of storage!

25-12!© Gunnar Gotshalks!

The Requirements – 5!

•  Should be applicable to a wide class of interactive
applications!

•  Should not require redesign for each new command
that can be undone!
»  Implies that undo and redo are different in nature

than the other commands!

•  Make reasonable use of storage!
» Cannot save entire state!

>  Incremental saves!

25-13!© Gunnar Gotshalks!

The Requirements – 6!

•  Should be applicable to a wide class of interactive
applications!

•  Should not require redesign for each new command
that can be undone!
»  Implies that undo and redo are different in nature

than the other commands!

•  Make reasonable use of storage!
» Cannot save entire state!

>  Incremental saves!

•  Applicable for one-level undo or multi-level undo!

25-14!© Gunnar Gotshalks!

Finding the Abstractions!

•  Undo and redo are properties of particular commands!

25-15!© Gunnar Gotshalks!

Finding the Abstractions – 2!

•  Undo and redo are properties of particular commands!

•  Redo is actually execution of the command in the
current context!

25-16!© Gunnar Gotshalks!

Finding the Abstractions – 3!

•  Undo and redo are properties of particular commands!

•  Redo is actually execution of the command in the
current context!
» Do not need a separate command!

25-17!© Gunnar Gotshalks!

Finding the Abstractions – 4!

•  Undo and redo are properties of particular commands!

•  Redo is actually execution of the command in the
current context!
» Do not need a separate command!

deferred class COMMAND!
feature!
 execute deferred end!
 undo deferred end!
end!

25-18!© Gunnar Gotshalks!

Partial Inheritance Hierarchy!

•  Each class provides attributes sufficient to support
local variants of execute and undo!

!

*!COMMAND!

LINE_INSERT!
LINE_DELETE!

STRING_REPLACE!

25-19!© Gunnar Gotshalks!

Partial Inheritance Hierarchy – 2!

•  Each class provides attributes sufficient to support
local variants of execute and undo!

•  Undo/redo spread through the system!

*!COMMAND!

LINE_INSERT!
LINE_DELETE!

STRING_REPLACE!

25-20!© Gunnar Gotshalks!

Partial Inheritance Hierarchy – 3!

•  Each class provides attributes sufficient to support
local variants of execute and undo!

•  Undo/redo spread through the system!
» Operations distributed over data!

*!COMMAND!

LINE_INSERT!
LINE_DELETE!

STRING_REPLACE!

25-21!© Gunnar Gotshalks!

Class LINE_DELETE!

class LINE_DELETE inherit COMMAND!
feature!
 deleted_line_index : INTEGER!
 deleted_line : STRING!
!

 set_deleted_line_index (n : INTEGER)!
 do deleted_line_index := n end!
!

 execute do!
 -- delete line!
 end!
!

 undo do!
 -- restore the last line!
 end!
end!

45!

"text line"!

deleted_line_index!

deleted_line!

25-22!© Gunnar Gotshalks!

INTERPRETER Class – Run feature!

•  The root for execution !
class INTERPRETER create run feature!
 ...!
 run do!
 from!
 start!
 until!
 quit_confirmed!
 loop!
 interactive_step!
 end!
 end!
 ...!
end!

25-23!© Gunnar Gotshalks!

Interactive Step – 1 level Undo – template!

interactive_step do!
 -- get latest user request and decode it!
!

 if normal_command then!
 -- execute the command!
!

 elseif request is undo then -- toggle undo/redo !
!

 if there is a command to undo then !
 -- undo last command!
!

 elseif there is a command to redo then !
 -- redo the command!
 end!
!

 else report erroneous request !
 end!
!

end!

25-24!© Gunnar Gotshalks!

Interactive Step – One Level Undo!

requested : COMMAND -- remember only 1cmd!
!
 interactive_step!
!

local cmd_type : INTEGER !
!

do!
!

 cmd_type := get_and_decode_user_request!
!

!-- create object and attach it to requested!
 create_command (cmd_type) -- sets requested !
!
 -- Do the command!
!
end!

25-25!© Gunnar Gotshalks!

Interactive Step – Do the Command!

!
!

 if normal_command then!
!

 requested.execute ; undoing := False!
!

 elseif request is undo and requested /= void then!
!

 if undoing then -- 2'nd undo in a row is a redo !!
 requested.execute ; undoing := False!
 else requested.undo ; undoing := True!
 end!
!

 else report erroneous request !
 end!

!

25-26!© Gunnar Gotshalks!

Technicalities!

•  Do not store the full state, just the difference!

25-27!© Gunnar Gotshalks!

Technicalities – 2!

•  Do not store the full state, just the difference!

•  Key to solution!
» dynamic binding & polymorphism!

>  requested.execute & requested.undo!

25-28!© Gunnar Gotshalks!

Technicalities – 3!

•  Do not store the full state, just the difference!

•  Key to solution!
» dynamic binding & polymorphism!

>  requested.execute & requested.undo!

•  Nothing application specific!
» Add specific subclasses of COMMAND!

25-29!© Gunnar Gotshalks!

Creating a COMMAND Object!

•  Do after decoding a request!

25-30!© Gunnar Gotshalks!

Creating a COMMAND Object – 2!

•  Do after decoding a request!

•  All commands created are descendants of
COMMAND!

25-31!© Gunnar Gotshalks!

Creating a COMMAND Object – 3!

•  Do after decoding a request!

•  All commands created are descendants of
COMMAND!

create_command (cmd_type : INTEGER) do!
!

 if cmd_type is Line_Insert then!
 create {LINE_INSERT} requested.make(...)!
!

 elseif cmd_type is Line_Delete then!
 create {LINE_DELETE} requested.make(...)!
!

 elseif....!
!

end!

25-32!© Gunnar Gotshalks!

Creating a COMMAND Object – 4!

•  Do after decoding a request!

•  All commands created are descendants of
COMMAND!

•  What about commands with no undo?!

create_command (cmd_type : INTEGER) do!
!

 if cmd_type is Line_Insert then!
 create {LINE_INSERT} requested.make(...)!
!

 elseif cmd_type is Line_Delete then!
 create {LINE_DELETE} requested.make(...)!
!

 elseif....!
!

end!

25-33!© Gunnar Gotshalks!

Multi-Level Undo!

•  Need to maintain a history of previous commands!

25-34!© Gunnar Gotshalks!

Multi-Level Undo – 2!

•  Need to maintain a history of previous commands!
» Actually keep only the commands in the path from

start to last command!

25-35!© Gunnar Gotshalks!

Multi-Level Undo – 3!

•  Need to maintain a history of previous commands!
» Actually keep only the commands in the path from

start to last command!
> or as far back as we are able to remember!

25-36!© Gunnar Gotshalks!

Multi-Level Undo – 4!

•  Need to maintain a history of previous commands!
» Actually keep only the commands in the path from

start to last command!
> or as far back as we are able to remember!

» Why do we only keep a path?!

25-37!© Gunnar Gotshalks!

Multi-Level Undo – 5!

•  Need to maintain a history of previous commands!
» Actually keep only the commands in the path from

start to last command!
> or as far back as we are able to remember!

» Why do we only keep a path?!
> Cognitive constraint!

–  Other structures too complex to use	

25-38!© Gunnar Gotshalks!

Multi-Level Undo – 6!

•  Need to maintain a history of previous commands!
» Actually keep only the commands in the path from

start to last command!
> or as far back as we are able to remember!

•  Also have a cursor to move back and forth through
that single path!

25-39!© Gunnar Gotshalks!

History List!

Feature names are in magenta !

history : LIST [COMMAND]!

first	

oldest remembered cmd	

 last after	

newest remembered cmd	

item	

Cursor	

execute, redo!undo!

forth	
back	
before	

25-40!© Gunnar Gotshalks!

Undo!

history : LIST [COMMAND]!
!
if not history.empty and not history.before then!
 history.item.undo!
 history.back!
else!
 message ("Nothing to undo")!
end!

25-41!© Gunnar Gotshalks!

Redo!

history : LIST [COMMAND]!
!
if not history.is_last then!
 history.forth!
 history.item.execute!
else!
 message ("Nothing to redo")!
end!

25-42!© Gunnar Gotshalks!

Execute Normal Command!

history : LIST [COMMAND]!
!
if not history.is_last then!
 history.remove_all_right!
end!
 history.put (requested)!
 requested.execute!

25-43!© Gunnar Gotshalks!

Issue: Command Arguments!

•  Some commands will need arguments!
> LINE_INSERT need lines of text!

25-44!© Gunnar Gotshalks!

Issue: Command Arguments – 2!

•  Some commands will need arguments!
> LINE_INSERT need lines of text!

•  Solution!
> Add to COMAND an attribute and a procedure to

set the argument 
 
 
 
 
!

argument : ANY!
!

set_argument (a : like argument)!
do argument := a end!
!
!

25-45!© Gunnar Gotshalks!

Issue: Command Arguments – 4!

•  Some commands will need arguments!
> LINE_INSERT need lines of text!

•  Solution!
> Add to COMAND an attribute and a procedure to

set the argument 
 
 
 
 
!

argument : ANY!
!

set_argument (a : like argument)!
do argument := a end!
!
!

Many!
arguments?!

25-46!© Gunnar Gotshalks!

Issue: Command Arguments – 5!

•  Some commands will need arguments!
> LINE_INSERT need lines of text!

•  Solution!
> Add to COMAND an attribute and a procedure to

set the argument 
 
 
 
 
!

•  Alternate is to pass the argument through execute!

argument : ANY!
!

set_argument (a : like argument)!
do argument := a end!
!
!
!
execute (argument : ANY) do ... end!

25-47!© Gunnar Gotshalks!

Issue: create_command Structure !

•  We can do better than the if ... then ... elseif ...
structure of create_command!

25-48!© Gunnar Gotshalks!

Issue: create_command Structure – 2!

•  We can do better than the if ... then ... elseif ...
structure of create_command!

•  Pre-compute an instance of every command!
» polymorphic instance set!

25-49!© Gunnar Gotshalks!

Issue: create_command Structure – 3!

•  We can do better than the if ... then ... elseif ...
structure of create_command!

•  Pre-compute an instance of every command!
» polymorphic instance set!

commands : ARRAY [COMMAND]!
!
create commands.make (1, command_count)!
!

create {LINE_INSERT} requested .make!
 commands[1] := requested!
!

create {LINE_DELETE} requested .make!
 commands[2] := requested!
...!

25-50!© Gunnar Gotshalks!

Issue: create_command Structure – 4!

•  We can do better than the if ... then ... elseif ...
structure of create_command!

•  Pre-compute an instance of every command!
» polymorphic instance set!

commands : ARRAY [COMMAND]!
!
create commands.make (1, command_count)!
!

create {LINE_INSERT} requested .make!
 commands[1] := requested!
!

create {LINE_DELETE} requested .make!
 commands[2] := requested!
...!

Example!
use of!
Prototype!
pattern!

25-51!© Gunnar Gotshalks!

Issue: create_command Structure – 5!

•  Replace the feature create_command with ...  
 
 
!

requested := commands [cmd_type] . twin 
 
 
!
 
 
 
!

25-52!© Gunnar Gotshalks!

Issue: create_command Structure – 5 !

•  Replace the feature create_command with ...  
 
 
!

•  If the argument is passed through execute, then only
one instance of each command is needed. Do not
need to clone.!

requested := commands [cmd_type] . twin 
 
 
!
 
 
 
requested := commands [cmd_type]!

25-53!© Gunnar Gotshalks!

History List Implementation!

•  Circular Array if bounded capacity is suitable!

0	

1	

2	

n-1	

n-2	

n-3	

...	

is_last	
is_first	

item	
Cursor	

25-54!© Gunnar Gotshalks!

User Interface!

•  Correspondence with implementation!
» Could have derived either from the other!

change relation label !
move figure!
new figure!

move figure!
move label!
move label!
move label!
new cluster!
move cluster tag!
destroy cluster!

redo undo!

25-55!© Gunnar Gotshalks!

Points to Ponder !

•  Design may involve many relatively small classes!
» one for each type of command!

25-56!© Gunnar Gotshalks!

Points to Ponder – 2!

•  Design may involve many relatively small classes!
» one for each type of command!

•  Simple inheritance structure, so efficiency is not a
concern!

25-57!© Gunnar Gotshalks!

Points to Ponder – 3!

•  Design may involve many relatively small classes!
» one for each type of command!

•  Simple inheritance structure, so efficiency is not a
concern!

•  Efficiency concerns often arise when you introduce
classes to represent actions!

25-58!© Gunnar Gotshalks!

Points to Ponder – 4!

•  Design may involve many relatively small classes!
» one for each type of command!

•  Simple inheritance structure, so efficiency is not a
concern!

•  Efficiency concerns often arise when you introduce
classes to represent actions!
» Does this abstraction deserve to be a class?!

25-59!© Gunnar Gotshalks!

Points to Ponder – 5!

•  Design may involve many relatively small classes!
» one for each type of command!

•  Simple inheritance structure, so efficiency is not a
concern!

•  Efficiency concerns often arise when you introduce
classes to represent actions!
» Does this abstraction deserve to be a class?!

>  Individual sort algorithms!
> Can pass the algorithm to use in other routines!
> Example FlexOr sort!

25-60!© Gunnar Gotshalks!

InsertSort as Object – Java!

public class InsertSort implements ArraySort {!
 !
 public void sort (final Object[] array,!
 final BinaryPredicate bp) {!
!
 execute (array , bp);!
 }!
!
 public static void execute ... // see next slide!
 // can also use without an instance in Java!
 // InsertSort.execute (....)!
}!
!
// Notice that BinaryPredicate is also an executable!
// object!

25-61!© Gunnar Gotshalks!

InsertSort – 2!

public static void execute (final Object [] array,!
 final BinaryPredicate bp) {!
 Object tmp;!
!

 for (int i = 1 ; i < array.length ; i++) { !
 for (int j = i!
 ; j > 0 && bp.execute (array [j] , array [j – 1])!
 ; j--) {!
!

 tmp = array [j];!
 array[j] = array [j – 1];!
 array [j – 1] = tmp;!
 }!
 }!
 }!
!

// BinaryPredicate is an executable object defined in a!
// similar way to InsertSort!

25-62!© Gunnar Gotshalks!

Points to Ponder – 6!

•  Alternate is to pass functions as arguments!
	

25-63!© Gunnar Gotshalks!

Points to Ponder – 7!

•  Alternate is to pass functions as arguments!

•  Example function passing!
» Numerical integration that needs the function f to

use for integration!
	

25-64!© Gunnar Gotshalks!

Points to Ponder – 8!

•  Alternate is to pass functions as arguments!

•  Example function passing!
» Numerical integration that needs the function f to

use for integration!
> C approach pass f to the integration routine!
> OO approach f as an object!

25-65!© Gunnar Gotshalks!

Points to Ponder – 9!

•  Alternate is to pass functions as arguments!

•  Example function passing!
» Numerical integration that needs the function f to

use for integration!
> C approach pass f to the integration routine!
> OO approach f as an object!

–  Use data abstraction to make it a class	

–  With the desired function as a feature	

–  Pass the object to the integration method	

25-66!© Gunnar Gotshalks!

Points to Ponder – 10!

•  Not all function passing is poor practice!

25-67!© Gunnar Gotshalks!

Points to Ponder – 11!

•  Not all function passing is poor practice!
> Different paradigm!

25-68!© Gunnar Gotshalks!

Points to Ponder – 12!

•  Not all function passing is poor practice!
> Different paradigm!

» Agents in Eiffel!

25-69!© Gunnar Gotshalks!

Points to Ponder – 13!

•  Not all function passing is poor practice!
> Different paradigm!

» Agents in Eiffel 
!

» Functional programming!

25-70!© Gunnar Gotshalks!

Points to Ponder – 14!

•  Not all function passing is poor practice!
> Different paradigm!

» Agents in Eiffel 
!

» Functional programming!
> Pass functions as input!

25-71!© Gunnar Gotshalks!

Points to Ponder – 15!

•  Not all function passing is poor practice!
> Different paradigm!

» Agents in Eiffel 
!

» Functional programming!
> Pass functions as input!
> Return functions as output!

25-72!© Gunnar Gotshalks!

Points to Ponder – 10!

•  Not all function passing is poor practice!
> Different paradigm!

» Agents in Eiffel 
!

» Functional programming!
> Pass functions as input!
> Return functions as output!

–  Functions compute functions to use later !	

