
24-1!© Gunnar Gotshalks!

Case Study!
Multi-Panel Interactive System!



24-2!© Gunnar Gotshalks!

The Problem Domain!

•  Build a general type of interactive system!
» Users interact with a set of panels !

> Web applications are an example!

•  Each session goes through a number of states!
> Finite state machine!
> Automatic Teller Machine!

» A state corresponds to a fill-in-the-blanks panel!
> User is adding to a database of information!

»   Depending upon user choices transitions occur to 
other states!



24-3!© Gunnar Gotshalks!

Example Panel!

– Enquiry on Flights –!

Flight from! Somewhere! Flight to! Anywhere!

Departure on or after ! not soon enough!

on or before!

Preferred airline(s):!
Special requirements:!

Available flights: 1!
Flt# AA 42      Dep  8:25   Arr 7:45    Thru: Chicago!

Choose next_action!
0 Exit    1 Help    2 Further enquiry   3 Reserve seat!

too late!



24-4!© Gunnar Gotshalks!

A State Transition Diagram!

Help!

Help! Help!

Help!Help!

1 Initial!

5 Confirmation!

4 Reservation!

2 Enquiry_!
on_flights!

3 Enquiry_!
on_seats!

1!

2!
3! 3!

2!

2!

3!

1!1!

1!

1!
1!

1!1!

2!3!

1!1!

3!2!

Numbers are!
choices in panel!



24-5!© Gunnar Gotshalks!

General Design Goals!

•  Create a design and implementation for such 
applications!

•  General & flexible solution!

•  Things to think about!
» Finite state machine may be very large!

> Applications can have hundreds of states and 
thousands of transitions!

» Structure of the system is subject to change!
> Cannot foresee all possible states & transitions!

» No specific application is mentioned!
> What if you need many variations!



24-6!© Gunnar Gotshalks!

First Attempt!

•  Block/Module oriented – procedural!

•  System made of a number of blocks!
» One for each state in the FSM!

»  Follows the Direct Mapping Rule!



24-7!© Gunnar Gotshalks!

First Attempt – 2!

Enquiry_Block!
     display panel!
     repeat!
         get user's answer and choice C for next step!
         if error in answer then output error fi!
     until not error in answer!
!
    "Process answer"!
    case C in!
        C0 : goto Exit_Block!
        C1 : goto Help_Block!
        C2 : goto Reservation_Block!
        ...!
    esac!

Similarly for all other states!
Easy to devise, does the job!
Terrible for meeting requirements!



24-8!© Gunnar Gotshalks!

First Attempt – 3!

Enquiry_Block!
     display panel!
     repeat!
         get user's answer and choice C for next step!
         if error in answer then output error fi!
     until not error in answer!
!
    "Process answer"!
    case C in!
        C0 : goto Exit_Block!
        C1 : goto Help_Block!
        C2 : goto Reservation_Block!
        ...!
    esac!

What are the problems?!



24-9!© Gunnar Gotshalks!

Block Design Problems!

•  Use goto's (Dijkstra)!
» Usually symptomatic of deeper problem!

•  Branch structure (goto's) are an exact 
implementation of the graph!
» Vulnerable to change!

> Add a new state!
–  add new block, change all other blocks	


> Add a new transition!
–  Change all blocks that should use it	




24-10!© Gunnar Gotshalks!

Block Design Problems – 2!

•  Forget reusability across applications!
» Specific to one application!

•  Want not just a solution but a quality solution!
» Have to work harder!

•  What does quality mean for this system?!



24-11!© Gunnar Gotshalks!

Quality Design!

•  A general design – a set of reusable modules – 
would be a huge benefit  
!



24-12!© Gunnar Gotshalks!

Quality Design – 2!

•  A general design – a set of reusable modules – would 
be a huge benefit 
!

•  Getting the problem to work is only a part of the 
solution and insufficient for the task!



24-13!© Gunnar Gotshalks!

Quality Design – 3!

•  A general design – a set of reusable modules – would 
be a huge benefit 
!

•  Getting the problem to work is only a part of the 
solution and insufficient for the task 
!

•  Customer's requirements go far beyond!
» mere correctness!
» mere functionality!



24-14!© Gunnar Gotshalks!

FSM Representation!

•  Problems seems to be due to the traversal (goto) 
structure!
• The representation of the finite-state machine!



24-15!© Gunnar Gotshalks!

FSM Representation – 2!

•  Problems seems to be due to the traversal (goto) 
structure!
• The representation of the finite-state machine!

What can we do?!



24-16!© Gunnar Gotshalks!

FSM Representation – 3!

•  Generalizing the transition diagram will gain 
generality!

•  ??? 
!

!



24-17!© Gunnar Gotshalks!

FSM Representation – 4!

•  Generalizing the transition diagram will gain 
generality 
!

•  Model the function transition as a transition table 
representation of a FSM!
» Designate one state as initial!
» One or more states as final!



24-18!© Gunnar Gotshalks!

Transition Table!

0      1      2       3!

1 Initial!

2 Flights!

3 Seats!

4 Reserv.!

5 Confirm!

-1     0      5       2!

        0      1       3!

        0      2       4!

        0      3       5!

        0      4       1!

Choice!

S!
t!
a!
t!
e!

0 Help!
-1 Final!

back!



24-19!© Gunnar Gotshalks!

Top Down Decomposition!

execute_session!

initial! transition! execute_state! is_final!

display! read! correct! message! process!



24-20!© Gunnar Gotshalks!

Implement execute_session!

execute_session!
     -- Execute a complete session!
     local state, next : INTEGER!
     do!
        state := initial  -- start in initial state!
        repeat 
                                                 -- next is a VAR parameter!
            execute_state (state, next )!
            state := transition ( state, next )!
        until is_final ( state )!
        end!
     end!



24-21!© Gunnar Gotshalks!

Implement execute_state!

execute_state ( in s : INTEGER , out c : INTEGER )!
     -- c contains the user's choice for next state!
     local a : ANSWER  ;  ok :BOOLEAN!
     do!
        repeat!
            display (s )    -- display panel for state s!
            read ( s , a )   -- get user answer in a!
            ok := correct ( s , a )!
        until ok end!
        process ( s , a )!
        c := next_choice ( a )    -- get user choice for panel!
     end!

What are the problems?!



24-22!© Gunnar Gotshalks!

Implement execute_state – 2!

execute_state ( in s : INTEGER , out c : INTEGER )!
     -- c contains the user's choice for next state!
     local a : ANSWER  ;  ok :BOOLEAN!
     do!
        repeat!
            display (s )    -- display panel for state s!
            read ( s , a )   -- get user answer in a!
            ok := correct ( s , a )!
        until ok end!
        process ( s , a )!
        c := next_choice ( a )    -- get user choice for panel!
     end!

State s is argument for all functions!!
What will be the structure/design of display?!



24-23!© Gunnar Gotshalks!

Top Down Problems?!

•  Tight coupling!
» State is argument to every routine!



24-24!© Gunnar Gotshalks!

Top Down Problems? – 2!

•  Tight coupling!

»  State is argument to every routine!

•  Means long and complicate control structure!
» Case statements everywhere on state!

!



24-25!© Gunnar Gotshalks!

Top Down Problems? – 3!

•  Tight coupling!

»  State is argument to every routine!

•  Means long and complicate control structure!

»  Case statements everywhere on state!

•  Violates single choice principle!
» Too many locations need to know about all states!

> Difficult to modify as states added or removed!

!



24-26!© Gunnar Gotshalks!

Top Down Problems? – 4!

•  Tight coupling!

»  State is argument to every routine!

•  Means long and complicate control structure!

»  Case statements everywhere on state!

•  Violates single choice principle!

»  Too many locations need to know about all states!
>  difficult to modify as states added or removed!

•  Not reusable/general – except as a template!
»  implicit argument in all functions is the application!
» Generality → know about all states in all 

applications!



24-27!© Gunnar Gotshalks!

OO Solution?!

How do you use OO to solve the problem?!



24-28!© Gunnar Gotshalks!

An OO Solution!

Routines exchange too much data ? 
!
→ Put routines in your data!



24-29!© Gunnar Gotshalks!

An OO Solution – 2!

•  Instead of building components around 
operations while distributing data!
» OO does reverse!

> build around data and distribute operations!
!

Routines exchange too much data ?!
→ put routines in your data!



24-30!© Gunnar Gotshalks!

An OO Solution – 3!

•  Instead of building components around operations while 
distributing data!

»  OO does reverse!
>  build around data and distribute operations!

•  Use most important data types as basis for 
modules!
» Routines are attached to data to which it relates 

most closely!

!

Routines exchange too much data ?!
→ put routines in your data!



24-31!© Gunnar Gotshalks!

An OO Solution – 4!

•  Instead of building components around operations while 
distributing data!

»  OO does reverse!
>  build around data and distribute operations!

•  Use most important data types as basis for modules!

»  Routines are attached to data to which it relates most closely!

•  In this application state should be a class!

Routines exchange too much data ?!
→ put routines in your data!



24-32!© Gunnar Gotshalks!

State as Class!

•  What would be handed over to state?!



24-33!© Gunnar Gotshalks!

State as Class – 2!

•  What would be handed over to state?!
» All operations that characterize a state!

> ???!



24-34!© Gunnar Gotshalks!

State as Class – 3!

•  What would be handed over to state?!
» All operations that characterize a state!

> Displaying screen!
> Analyzing answer!
> Checking answer!
> Producing error messages!
> Processing correct answer!

» Customize for each state!



24-35!© Gunnar Gotshalks!

Class State!

•  Deferred class!

•  Deferred features!

•  Execute is effective because we 
know its behaviour!

*!STATE!

input : ANSWER !
choice : INTEGER !
execute !
correct : BOOLEAN !
display*!
read*!
message*!
process*!

execute!
local ok : BOOLEAN!
do!
    from not ok until ok loop!
    display  ;  read  ;  ok := correct!
    if not ok then message end!
    end!
ensure ok!
end!



24-36!© Gunnar Gotshalks!

Inheritance & Implementation!

•  STATE describes the general notion of state!
» execute is the same for all states!
» other routines must be customized!

•  Use deferred classes to specify general situation and 
provide for extension!

•  Use inheritance to specify particular states!
»  Implement deferred routines!

*!STATE!

INITIAL!
RESERVATION!

CONFIRMATION!



24-37!© Gunnar Gotshalks!

Architecture of System!

•  Separates elements common to all states and 
elements specific to individual states 
!

•  Common elements do not need to be redeclared in 
descendants!



24-38!© Gunnar Gotshalks!

Architecture of System – 2!

•  Satisfies open-closed principle!
» STATE is closed!
»  Inheritance opens it 
!

•  State is typical of behaviour classes!
» Deferred classes capture common behaviour  
!

•  Inheritance & Deferral are key for reusable 
components!



24-39!© Gunnar Gotshalks!

Completing the System Design!

•  How do we represent transitions and an actual 
application?  
!

•  Have to take care of managing a session!
» What execute_session did in top down 
!

•  What is missing?!
» The notion of the specific application!



24-40!© Gunnar Gotshalks!

Application Class!

•  Features!
» execute!

> how to execute the application!
»  initial & is_final!

>  special states – properties of application!
»  transition!

> mapping from state to state!

•  May want to add more features!
» Add new state or transition!
» Store in a data base!
»  ...!



24-41!© Gunnar Gotshalks!

Application Class – 2!
class application feature!
    initial_state_number : INTEGER!
!
!

    execute!
        local state : STATE  ;  state_number : INTEGER!
        do!
        from st_number : initial_state_number!
        until st_number = 0!
        loop!
            state := associated_state.item ( state_number )!
            state.execute!
            state_number := transition.item (state.number, state.choice )!
        end!

!…!
!

!…!
 end!

More detail in next 4 slides!



24-42!© Gunnar Gotshalks!

Transition Array!

•  Number states from 1..P 
Choices are numbered from 1..Q!

•  Represent transition as an P (states) x Q(choices) array 
transition!

!
! !transition : ARRAY2 [ INTEGER ]  -- State numbers!

•  Need support routines such as the following!
   !put_transistion ( in_state_number : INTEGER  

 ! !           ; choice : INTEGER  
 ! !           ; out_state_number : INTEGER )!



24-43!© Gunnar Gotshalks!

Associated State!

»  Array associated_state gives the STATE associated 
with a state number!

!
! !associated_state : ARRAY [ STATE ]!

•  Need support routines such as the following!
!
! !put_state ( state_number : INTEGER!

                              ; state : STATE )!
    !



24-44!© Gunnar Gotshalks!

Initial state!

•  Attribute initial_state_number represents the starting 
state!

• Have a support routine to select the initial state!

    ! !set_initial_state (state_number : INTEGER )!
!



24-45!© Gunnar Gotshalks!

Implementing the Design!

•  Creation procedure of APPLICATION uses creation 
procedures of ARRAY and ARRAY2!

–  see p691 & 692 of Meyer 1997���
	


•  Building an application is relatively easy due separation of 
parts!



24-46!© Gunnar Gotshalks!

Points to Think About!

•  Forget about a main program 
!

•  Focus on data abstraction!
» Leads to structures that can more easily change 

and are more easily reused  
!

•  Don't ask!
» What does the system do?!

>  It is not a function!



24-47!© Gunnar Gotshalks!

Points to Think About – 2!

•  Don't worry too much about modelling the real world!
» Goto version is a close model but poor design!



24-48!© Gunnar Gotshalks!

Points to Think About – 3!

•  Heuristic to find the classes!
» Look for data transmissions and concepts that 

appear in communication between numerous 
components of a system!



24-49!© Gunnar Gotshalks!

Points to Think About – 4!

What counts in OO design is how good are your!
abstractions for structuring your software.!



24-50!© Gunnar Gotshalks!

Points to Think About – 5!

What counts in OO design is how good are your!
abstractions for structuring your software.!
!
Above all else, worry about finding the !
right abstractions!



24-51!© Gunnar Gotshalks!

Points to Think About – 6!

What counts in OO design is how good are your!
abstractions for structuring your software.!
!
Above all else, worry about finding the !
right abstractions!

Big win from OO!
!clear,  general,  manageable,  
change-ready abstractions !


