
23-1!© Gunnar Gotshalks!

Global Objects!

23-2!© Gunnar Gotshalks!

Manifest Constants!

•  More commonly known as literals  
!
Objects with their name being their value  
!

>  Numbers !0, -1, 5, 5.123, -4.3^-6, ... 
!

>  Strings !"abcd", "I am a string", ... 
!

>  Characters !'a', '0', …!

23-3!© Gunnar Gotshalks!

Symbolic Constant Principle!

!Do not use a manifest constant, other than zero or
identity elements of basic operations, in any construct
other than a symbolic constant declaration 
!

File_not_found : STRING = "Cannot find file” 
!
Char_newline : CHARACTER = '%N'!

23-4!© Gunnar Gotshalks!

Global Constants!

•  Group into appropriate classes!
   class EDITOR_CONSTANTS feature  

 Insert : CHARACTER = 'i' 
 Delete : CHARACTER = 'd' 
end!

23-5!© Gunnar Gotshalks!

Global Constants – 2!

•  Group into appropriate classes!

   class EDITOR_CONSTANTS feature  
 Insert : CHARACTER = 'i' 
 Delete : CHARACTER = 'd' 
end!

•  Use inheritance!
   class EDITOR inherit EDITOR_CONSTANTS 

 feature  
 ... reference by name ... Insert , Delete  
 end!

23-6!© Gunnar Gotshalks!

Global Constants – 3!

•  Group into appropriate classes!

   class EDITOR_CONSTANTS feature  
 Insert : CHARACTER = 'i' 
 Delete : CHARACTER = 'd' 
end!

•  Use – multiple inheritance as required!

   class EDITOR inherit EDITOR_CONSTANTS 
 feature  
 ... reference by name ... Insert , Delete  
 end!

•  But: EDITOR is not an EDITOR_CONSTANTS!
»  Unlikely to substitute, still a bit jarring!

23-7!© Gunnar Gotshalks!

Global Constants – 4!

•  Group into appropriate classes!
   class EDITOR_CONSTANTS feature  

 Insert : CHARACTER = 'i' 
 Delete : CHARACTER = 'd' 
end!

•  Have an attribute for the shared constants!
   class EDITOR  

feature!
   ed_const : EDITOR_CONSTANTS!   …!
   create ed_const!
   ed_const.Insert ! -- indirect reference!   …!

   end!

23-8!© Gunnar Gotshalks!

User Type Constants!

•  Need a mechanism to create and access constants for
any type a user may create.!

•  Once routine!
   constant : UserType 

 once 
 create Result.make (...) 
 end!

•  Example!
   i : Complex  

 once  
 create Result.make_cartesian (0, 1)  
 end!

Replaces do!

23-9!© Gunnar Gotshalks!

Once Routine!

•  The body is executed only once!
»  Result is saved and returned on every call!

23-10!© Gunnar Gotshalks!

Once Routine – 2!

•  The body is executed only once!
»  Result is saved and returned on every call!
»  For expanded variables, have true constants!

23-11!© Gunnar Gotshalks!

Once Routine – 3!

•  The body is executed only once!
»  Result is saved and returned on every call!
»  For expanded variables, have true constants!
»  For references, have shared objects!

>  The referenced object can be modified!

23-12!© Gunnar Gotshalks!

Once Routine – 4!

•  The body is executed only once!

»  Result is saved and returned on every call!

»  For expanded variables, have true constants!

»  For references, have shared objects!
>  The referenced object can be modified!

•  Using the make facility guarantees the constant satisfies
the class invariants!

23-13!© Gunnar Gotshalks!

Once Routine – 5!

•  The body is executed only once!

»  Result is saved and returned on every call!

»  For expanded variables, have true constants!

»  For references, have shared objects!
>  The referenced object can be modified!

•  Using the make facility guarantees the constant satisfies the class
invariants!

•  To prevent changes (e.g. in the value of complex i)!
»  Add to class invariant!

   i.x = 0 and i.y = 1!

23-14!© Gunnar Gotshalks!

Shared Objects!

•  Example of a message window!
>  Many classes will want to use the same message

window – constant!

23-15!© Gunnar Gotshalks!

Shared Objects – 2!

•  Example of a message window!
>  Many classes will want to use the same message

window – constant!
>  The displayed message changes, thus the window as

an object changes!

23-16!© Gunnar Gotshalks!

Shared Objects – 3!

•  Example of a message window!
>  Many classes will want to use the same message window –

constant!
>  The displayed message changes, thus the window as an

object changes  
!

   Message_window : Window  
 once 
 create Result.make (... param for window ...)  
 end  
!

   ... Example use ...!
   Message_window.put_text("The message")!

23-17!© Gunnar Gotshalks!

Once Procedures!

•  Can use the once mechanism to execute a procedure
once – no value is returned!

>  Display help windows!

23-18!© Gunnar Gotshalks!

Once Procedures – 2!

•  Can use the once mechanism to execute a procedure
once – no value is returned!

>  Display help windows!
»  An initialization routine may be called from different

classes depending upon what a user does!

23-19!© Gunnar Gotshalks!

Once Procedures – 3!

•  Can use the once mechanism to execute a procedure
once – no value is returned!

>  Display help windows!
»  An initialization routine may be called from different

classes depending upon what a user does!
»  Do not execute if the user does not execute a method

from a specific set!

23-20!© Gunnar Gotshalks!

Once Procedures – 4!

•  Can use the once mechanism to execute a procedure
once – no value is returned!

>  Display help windows!
»  An initialization routine may be called from different

classes depending upon what a user does!
»  Do not execute if the user does not execute a method

from a specific set!
»  But only execute once even if user executes multiple

methods from the set!

23-21!© Gunnar Gotshalks!

Once Procedures – 5!

•  Can use the once mechanism to execute a procedure once – no value
is returned!

>  Display help windows!

»  An initialization routine may be called from different classes
depending upon what a user does!

»  Do not execute if the user does not execute a method from a
specific set!

»  But only execute once even if user executes multiple methods
from the set!

•  Better than using a flag to control once only use as
compiler enforces it!

23-22!© Gunnar Gotshalks!

Once Function Rule!

The result type of a once function may not be anchored
and may not involve formal generic parameters!

23-23!© Gunnar Gotshalks!

Unique Values!

•  Unique values are often used to distinguish cases!

23-24!© Gunnar Gotshalks!

Unique Values – 2!

•  Unique values are often used to distinguish cases!
>  A frequent use of symbolic constants!

   IO_completion_code : INTEGER!
   successful_open : INTEGER = 1  

successful_close : INTEGER = 2  
…!

23-25!© Gunnar Gotshalks!

Unique Values – 3!

•  Unique values are often used to distinguish cases!
>  A frequent use of symbolic constants!

   IO_completion_code : INTEGER!
   successful_open : INTEGER = 1  

successful_close : INTEGER = 2  
...!

•  Let compiler select values, rather than programmer!
   successful_open, successful_close 

 : INTEGER = unique!

23-26!© Gunnar Gotshalks!

Unique Values – 4!

•  Unique values are often used to distinguish cases!
>  A frequent use of symbolic constants!

   IO_completion_code : INTEGER!
   successful_open : INTEGER = 1  

successful_close : INTEGER = 2  
...!

•  Let compiler select values, rather than programmer!
   successful_open, successful_close 

 : INTEGER = unique!

•  Values are unique and ascending if defined in one
statement 
 if code > successful_open then ...!

