
20b-1!© Gunnar Gotshalks!

Inheritance!
&!

Adaptation!

20b-2!© Gunnar Gotshalks!

Need for adaptation!

•  Suppose we have a class for which we do not have the
program text!
»  All we have is the interface  
!

20b-3!© Gunnar Gotshalks!

Need for adaptation – 2!

•  Suppose we have a class for which we do not have the
program text!
»  All we have is the interface  
!

•  We want to modify the class!
»  How? it is closed  
!

20b-4!© Gunnar Gotshalks!

Need for adaptation – 3!

•  Suppose we have a class for which we do not have the program text!

»  All we have is the interface  
!

•  We want to modify the class!

»  How? it is closed  
!

•  We need to be able to open the class for modification!
»  to change features!
»  add new features!
»  remove features!

20b-5!© Gunnar Gotshalks!

Open-Closed Principle!

•  Open – Available for extension – add new features!

•  Closed – Available for client use – stable in spite of
extensions!

In real projects	

A module needs to be both open and closed!	

20b-6!© Gunnar Gotshalks!

Open-Closed Principle – 2 !

»  How is the open-closed principle implemented in OO
languages?!

20b-7!© Gunnar Gotshalks!

Open-Closed Principle – 3!

•  Inheritance!
»  Allows us to re-open a class after it is closed!
»  It is the mechanism that makes the open-closed

principle possible!
!

20b-8!© Gunnar Gotshalks!

Open-Closed Principle – 4!

•  Inheritance!

»  Allows us to re-open a class after it is closed!

»  It is the mechanism that makes the open-closed principle
possible!

•  In general, a child class inherits all the features from a
parent class!
»  Though OO languages allow us to modify the inherited

features!

20b-9!© Gunnar Gotshalks!

Invariant Inheritance Rule!

The invariant property of a class is the Boolean
and of the assertions appearing in its invariant
clause, and of the invariant properties of its
parents if any.!

20b-10!© Gunnar Gotshalks!

Creation Inheritance Rule!

An inherited feature's creation status in a parent
class (whether or not the feature is a creation
method) has no bearing on its creation status in
the child class.!

20b-11!© Gunnar Gotshalks!

Feature Adaptation!

•  Under inheritance a new class may share behaviour of a
parent class, but may need to modify it!

20b-12!© Gunnar Gotshalks!

Feature Adaptation – 2!

•  Under inheritance a new class may share behaviour of a parent class,
but may need to modify it!

•  Want to adapt features from PERSON that may not be
quite appropriate for its subclasses!

PERSON!

EMPLOYEE! STUDENT! TUTOR! PROF!

20b-13!© Gunnar Gotshalks!

Eiffel Adaptation Mechanisms!

•  Renaming!

»  Rename P as Q!
>  Change the name of a feature from P to Q!

•  Redefining!

»  feature behaviour!

•  Changing!

»  export permissions!

•  Effecting!

»  implementing deferred features!

•  Undefine!

» When a feature is not needed -- makes class deferred!

20b-14!© Gunnar Gotshalks!

Redefinition!

•  Consider class PERSON with a feature display!

20b-15!© Gunnar Gotshalks!

Redefinition – 2!

•  Consider class PERSON with a feature display!

•  Display mechanisms may not be appropriate for
subclasses – different objects to display depending upon
type!

>  Want to change semantics not syntax!

20b-16!© Gunnar Gotshalks!

Redefinition – 3!

•  Consider class PERSON with a feature display!

•  Display mechanisms may not be appropriate for
subclasses – different objects to display depending upon
type!

>  Want to change semantics not syntax!

class EMPLOYEE inherit PERSON!
redefine display end!
...!
display do!
 -- new display body here!
end!
...!
end !

20b-17!© Gunnar Gotshalks!

Constraints on Redefinition!

•  You do not have complete freedom with redefinition  
!

20b-18!© Gunnar Gotshalks!

Constraints on Redefinition – 2!

•  You do not have complete freedom with redefinition  
!

•  Rules have to be obeyed in order to maintain
substitutability and strong typing 
!

20b-19!© Gunnar Gotshalks!

Constraints on Redefinition – 3!

•  You do not have complete freedom with redefinition  
!

•  Rules have to be obeyed in order to maintain substitutability and
strong typing 
!

•  If you change a type in a redefinition it must be a subtype
of the original!

20b-20!© Gunnar Gotshalks!

Constraints on Redefinition – 4!

•  You do not have complete freedom with redefinition  
!

•  Rules have to be obeyed in order to maintain substitutability and
strong typing 
!

•  If you change a type in a redefinition it must be a subtype
of the original!
» Within that constraint, can change!

>  result type!
>  parameter types!

20b-21!© Gunnar Gotshalks!

Eiffel Redefinition Rules!

•  Function with no arguments can be redefined to an
attribute but NOT vice-versa!

20b-22!© Gunnar Gotshalks!

Eiffel Redefinition Rules – 2!

•  Function with no arguments can be redefined to an
attribute but NOT vice-versa!
»  Assignment possible for attributes, not functions!
!

20b-23!© Gunnar Gotshalks!

Eiffel Redefinition Rules – 3!

•  Function with no arguments can be redefined to an attribute but NOT
vice-versa!
»  Assignment possible for attributes, not functions!
!

•  Redefined feature must type conform to the original!

20b-24!© Gunnar Gotshalks!

Eiffel Redefinition Rules – 4!

•  Function with no arguments can be redefined to an attribute but NOT
vice-versa!
»  Assignment possible for attributes, not functions!
!

•  Redefined feature must type conform to the original!

•  Redefined feature must conform with respect to
correctness to the original!

>  See this when we get to inheritance and contracts!

20b-25!© Gunnar Gotshalks!

Eiffel Redefinition Rules – 5!

•  Prefix a feature with frozen to prevent redefinition!

20b-26!© Gunnar Gotshalks!

Eiffel Redefinition Rules – 6!

•  Prefix a feature with frozen to prevent redefinition  
!

•  To execute the original definition within the redefinition
use  

!Precursor { parent_class } (...)!

20b-27!© Gunnar Gotshalks!

Eiffel Redefinition Rules – 7!

•  Prefix a feature with frozen to prevent redefinition  
!

•  To execute the original definition within the redefinition
use  

!Precursor { parent_class } (...)  
!
»  Similar to super in Java!

20b-28!© Gunnar Gotshalks!

Eiffel Redefinition Rules – 8!

•  Prefix a feature with frozen to prevent redefinition  
!

•  To execute the original definition within the redefinition
use  

!Precursor { parent_class } (...)  
!
»  Similar to super in Java!

»  Parent_class is used only for multiple inheritance to
disambiguate which parent!

20b-29!© Gunnar Gotshalks!

Renaming vs Redefinition!

PERSON!

EMPLOYEE!

PERSON!

EMPLOYEE!

class EMPLOYEE!
 inherit PERSON!
 rename!
 display as p_display!
!
 feature { ANY }!
 display do ... end!
!
end !

class EMPLOYEE!
 inherit PERSON!
 redefine!
 display end!
!
 feature { ANY }!
 display do ... end!
!
end !

20b-30!© Gunnar Gotshalks!

Notes – Renaming vs Redefinition!

•  Renaming!
»  no formal connection between display features even

though they have the same name!

»  Can change the contract ! 
!

•  Redefining!
»  close connection between display features  
!

•  Using redefinition!
»  Essential for successful use of dynamic binding!
»  Cannot change the contract !!

20b-31!© Gunnar Gotshalks!

Redefining a Signature!

•  May change a signature to maintain correctness!

•  Consider a DEVICE class used to represent hardware that
can be attached to a network.!
»  For every device there is an alternate – used when the

first is not available!

class DEVICE feature!
 alternate : DEVICE!
 set_alternate (a : DEVICE)!
 do!
 alternate := a!
 end!
 !
end !

20b-32!© Gunnar Gotshalks!

Redefining a Signature – 2!

•  A PRINTER is a special kind of DEVICE!
>  should inherit from DEVICE but alternate can only be

another PRINTER!

class PRINTER inherit DEVICE!
 redefine alternate, set_alternate end!
 feature!
 alternate : PRINTER!
 set_alternate (a : PRINTER)!
 do!
 alternate := a!
 end!
 !
end !

Types have changed!
from DEVICE to!
PRINTER!
!
PRINTER is a subtype!
of DEVICE!
!
All is well!

20b-33!© Gunnar Gotshalks!

Type Redeclaration Rule!

!
»  See Redefining a Signature slides!

A redeclaration of a feature may replace the type of
the feature (in an attribute or function) or the type of
a formal argument (if a routine) by any type that
conforms to the original!

20b-34!© Gunnar Gotshalks!

Type Redeclaration Problem!

•  While the rule guarantees proper typing inconsistencies
can arise if types are not changed consistently 
!
»  Leads to use of Anchored Declarations  
!

>  The ability to define types relatively and not
absolutely!

20b-35!© Gunnar Gotshalks!

Anchored Declaration!

•  Provide a shortcut for certain kinds of signature
redefinitions!

•  Declarations can be made relative to an anchor type
rather than providing an absolute declaration!

class NODE [G] create make!
 !
feature { NONE }!
 item : G -- what's held in the node!
 next : like Current !
feature { ANY }!
 make (g : G) ...!
 change_item (g : G)!
 change_next (other : like next)!
!
end !

Current is the anchor.!
next points to a node!
of the same type as!
Current!

other is same type as!
Next – recursive to Current!

20b-36!© Gunnar Gotshalks!

Anchored Declaration Rules!

•  The base class of like anchor is!
»  the base class of the type of anchor in the current class!
»  If anchor is Current, then the base class is the enclosing

class!

20b-37!© Gunnar Gotshalks!

Anchored Declaration Rules – 2!

•  The base class of like anchor is!
»  the base class of the type of anchor in the current class!
»  If anchor is Current, then the base class is the enclosing class!

•  Can have recursive definition!
»  like anchor can be based on an anchored type!
»  Do not have cycles in the anchor chain – no knots!

20b-38!© Gunnar Gotshalks!

Anchored Declaration Rules – 3!

•  The base class of like anchor is!
»  the base class of the type of anchor in the current class!
»  If anchor is Current, then the base class is the enclosing class!

•  Can have recursive definition!
»  like anchor can be based on an anchored type!
»  Do not have cycles in the anchor chain – no knots!

•  While like anchor conforms to its base class T, T does
not conform to like anchor!
»  Problems occur if the anchor is redeclared in a subclass

(see warning p603 CD, p604 book)!

20b-39!© Gunnar Gotshalks!

Information Hiding and Inheritance !

•  Inheritance and Information Hiding are orthogonal
mechanisms 
!
»  If B inherits from A  
!

>  B is free to export or hide any feature it inherits in all
possible combinations!

20b-40!© Gunnar Gotshalks!

Information Hiding and Inheritance – 2 !

•  Inheritance and Information Hiding are orthogonal mechanisms!

»  If B inherits from A!
>  B is free to export or hide any feature it inherits in all

possible combinations!

»  Need an export clause to change the export status from
that of the parent!

class B inherit!
 A!
 export { NONE } f end -- f is secret!
 export { ANY } g end -- g is public!
 export { X, Y } h end -- h is selectively public!
... ! ! ! -- to X, Y and their descendants!
end!

20b-41!© Gunnar Gotshalks!

Interface & Implementation Use!

Client! Inheritance!

Use through interface!
!
Information hiding!
!
Protection against changes!
in original implementation!

Use of implementation!
!
No information hiding!
!
No protection against changes!
in original implementation!

20b-42!© Gunnar Gotshalks!

Deferred Features and Classes!

•  Do not need nor always can define everything (fully
implement) within a class!

20b-43!© Gunnar Gotshalks!

Deferred Features and Classes – 2!

•  Do not need nor always can define everything (fully
implement) within a class!

•  Consider the FIGURE hierarchy!
»  Most general notion is FIGURE!

20b-44!© Gunnar Gotshalks!

Deferred Features and Classes – 3!

•  Do not need nor always can define everything (fully
implement) within a class!

•  Consider the FIGURE hierarchy!
»  Most general notion is FIGURE!

•  Ideally want to apply rotate and translate to any figure f
letting dynamic binding select the appropriate method at
run time!

20b-45!© Gunnar Gotshalks!

Deferred Features and Classes – 4!

•  Do not need nor always can define everything (fully
implement) within a class!

•  Consider the FIGURE hierarchy!
»  Most general notion is FIGURE!

•  Ideally want to apply rotate and translate to any figure f
letting dynamic binding select the appropriate method at
run time!

•  Could define a rotate, but useless!
»  There is nothing to define!
»  Figure cannot provide even a default implementation!

20b-46!© Gunnar Gotshalks!

Deferred Features and Classes – 5!

•  Want to declare the existence of rotate and translate at
the FIGURE level so all subtypes have these features
available!

20b-47!© Gunnar Gotshalks!

Deferred Features and Classes – 6!

•  Want to declare the existence of rotate and translate at
the FIGURE level so all subtypes have these features
available!

•  Let the actual descendants provide the specific
implementation each type needs!

20b-48!© Gunnar Gotshalks!

Deferred Features and Classes – 7!

•  Want to declare the existence of rotate and translate at
the FIGURE level so all subtypes have these features
available!

•  Let the actual descendants provide the specific
implementation each type needs!

•  Such features are called deferred and classes containing
at least one deferred feature are called deferred classes!

rotate (centre : POINT ; angle : REAL)!
 deferred!
end!

20b-49!© Gunnar Gotshalks!

Effecting as feature!

•  In a proper descendent of FIGURE you will need to
implement rotate!
»  Process is called effecting!

20b-50!© Gunnar Gotshalks!

Effecting as feature – 2!

•  In a proper descendent of FIGURE you will need to implement rotate!

»  Process is called effecting!

•  Deferred features are not redefined as there is no
definition to modify!

>  Instead we redeclare them!

class POLYGON inherit FIGURE!
 feature!
 rotate (centre : POINT ; angle : REAL)!
 -- write the rotation algorithm here!
 end!
...!
end !

20b-51!© Gunnar Gotshalks!

Undefining a feature!

•  Used when a feature is defined in a parent class but not
needed or wanted in a child class 
!

>  Useful in multiple inheritance  
!

!

20b-52!© Gunnar Gotshalks!

Undefining a feature – 2!

•  Used when a feature is defined in a parent class but not needed or
wanted in a child class 
!

>  Useful in multiple inheritance  
!

•  Undefining properties!
»  Feature is not usable in a child class!
» We still have substitutability!
»  Cannot call an undefined feature!

!

20b-53!© Gunnar Gotshalks!

Undefining a feature – 3!

•  What if we call an undefined feature?!
»  Undefining makes an effective feature deferred!

deferred class CIRCLE inherit ELLIPSE!
 undefine rotate end!
...!
end !

Cannot instantiate a circle!
– has a deferred method!

20b-54!© Gunnar Gotshalks!

Redeclaration Table!

Deferred! Effective!

Deferred!

Effective!

Redefine! Undefine!

Redeclare! Redefine!

Redeclaring from!
 to!

20b-55!© Gunnar Gotshalks!

Types and Modules – Dual Perspective!

Module!
view!

Type!
view!

Addition of features!
Redefinition!
Renaming!
Descendant hiding!
Multiple inheritance!
Repeated inheritance!

Polymorphism!
Dynamic binding!
Deferred features  
 & effecting!

